(12)

United States Patent

Marino et al.

US008402109B2

US 8,402,109 B2
Mar. 19,2013

(10) Patent No.:
(45) Date of Patent:

(54)
(735)

(73)

@
(22)
(65)

(63)

(60)

(1)

(52)
(58)

WIRELESS ROUTER REMOTE FIRMWARE
UPGRADE

Inventors: Joseph P. Marino, New York, NY (US);
Jonathan Fortin, Montreal (CA)

Assignee: Gytheion Networks LLC, New York,
NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 13/587,394

Filed: Aug. 16,2012
Prior Publication Data
US 2013/0013907 A1l Jan. 10, 2013
Related U.S. Application Data

Continuation-in-part of application No. 13/015,053,
filed on Jan. 27, 2011, now Pat. No. 8,326,936, which
is a continuation of application No. 11/350,905, filed
on Feb. 8, 2006, now Pat. No. 7,904,518.

Provisional application No. 60/653,163, filed on Feb.
15, 2005.

Int. CI.

GO6F 15/167 (2006.01)

US.Cl ... 709/212; 709/201; 709/216; 709/220
Field of Classification Search .................. 709/201,

709/212-216, 220
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,321,267 B1  11/2001 Donaldson
6,701,440 Bl 3/2004 Kim et al.
6,854,007 Bl 2/2005 Hammond
6,941,466 B2 9/2005 Mastrianni
6,986,049 B2 1/2006 Delany
7,027,463 B2 4/2006 Mathew et al.

2002/0007453 Al 1/2002 Nemovicher

2002/0073304 Al 6/2002 Marsh et al.

2002/0083156 Al* 6/2002 Wysoczynski ................ 709/219

2003/0066062 Al
2003/0236970 Al

4/2003
12/2003

Brannock et al.
Palmer et al.

2004/0015941 Al 1/2004 Sekine
2004/0083469 Al 4/2004 Chen et al.
2004/0107356 Al 6/2004 Shamoon et al.
2005/0005160 Al 1/2005 Bates et al.
2005/0021637 Al 1/2005 Cox
2005/0021968 Al 1/2005 Zimmer et al.
2005/0027807 Al 2/2005 Fengler et al.
2005/0039178 Al 2/2005 Marolia et al.
2005/0055595 Al 3/2005 Frazer et al.
2005/0097542 Al 5/2005 Lee
2005/0198160 Al 9/2005 Shannon et al.
2005/0198173 Al 9/2005 Evans
2005/0283519 Al  12/2005 Turgeman et al.
(Continued)
OTHER PUBLICATIONS

Karim Yaghmour, “9.5 U-Boot” from “Building Embedded Linux
Systems”, retrieved from <<http://etutorials.org/Linux+systems/
embedded-+linux+systems/Chapter+9.

+Setting+Up+the+Bootloader/9.5+U-Boot/>>, Apr. 2003, 18 pages.

(Continued)

Primary Examiner — Phuoc Nguyen
(74) Attorney, Agent, or Firm — Oglivie Law Firm

(57) ABSTRACT

A wireless router receives a firmware update from a remote
server, and destructively overwrites router firmware in flash
memory in a chunk-wise manner, and then writes a kernel
memory before going live with upgraded firmware. Some
routers authenticate the firmware image. In some cases,
image chunks are re-ordered into an executable order after
receipt and before finishing their final arrangement in the
flash memory. In some routers, a maximum firmware image
size is at least two chunk sizes smaller than the flash memory
storage capacity. Some routers remap ROM to RAM memory.
Some decompress data from flash into a RAM. Some save
text file configuration settings in flash before rebooting. Some
detect a user’s inactive billing status and redirect a web
browser to a billing activation page.

20 Claims, 11 Drawing Sheets

- 800

"" Contain 801 a version 803 of firmware 802 L,

‘“1 Remotely request 804 a firmware update 805 L_,

™ Receive 808 a (responsive) firmware image 808 | |

1 Destructively 811 overwrite flash memory chunks L

ﬂ Reboot 812 and go live 813 with upgraded firmware L_,

[~ Write-flash-and-then-write-kernel 814 with firmware }_|

[ Write-both-flash-and-RAM-disk 816 with firmware L_‘

[ Receive 816 chunks 810 out of executable order | |

—‘1 Re-order 817 firmware chunks into flash memory L_,

[~ Check 818 firmware image size vs. chunks, flash 1|

[~ Remap 819 ROM address 820 to RAM address 821 L

[~ Decompress 822 data from flash, copy 823 to RAM L_,

7] Overwrite 824 flash with settings 825 from file 826 | |

[ Overwrite 827 file with settings from flasn | |

[ Receive 828 billing status inactive Indication 829 | |

"‘ Redirect 830 browser 831 to activation page 832 R

] Send 806 request 807 for firmware update

I Authenticate 833 firnware image L,




US 8,402,109 B2
Page 2

2005/0289646
2006/0004896
2006/0031319
2006/0047766
2006/0047920
2006/0053293
2006/0068755
2006/0069732
2006/0075028
2006/0143475
2006/0184635
2007/0274230
2008/0156178

U.S. PATENT DOCUMENTS

Al 12/2005
Al 1/2006
Al 2/2006
Al 3/2006
Al 3/2006
Al 3/2006
Al 3/2006
Al 3/2006
Al 4/2006
Al 6/2006
Al 8/2006
Al* 11/2007
Al 7/2008

Zimmer et al.
Nelson et al.
Nelson et al.
Spadea, III
Moore et al.
Zager et al.
Shraim et al.
Shannon et al.
Zager et al.
Herbert et al.
Owen et al.

Werber et al. ..........

Georges et al.

OTHER PUBLICATIONS

“Flash memory”, retrieved from <<http://en.wikipedia.org/wiki/
Flash__memory>>, Aug. 1, 2012, 12 pages.

“Push technology”, retrieved from <<http://en.wikipedia.org/wiki/
Push__technology>>, Jul. 30, 2012, 4 pages.

“Real View™ Compilation Tools, Version 2.1, Developer Guide”,
ARM DUI 0203D, copyright date 2002-2004, 198 pages.
“MANGA KS8695 GNU/Linux 2.6x: File Release Notes and
Changelog”, retrieved from <<http://sourceforge.net/project/
shownotes.php?group_id=127426&release_id=293127>>, copy-
right date 2004, 2 pages.

....... 370/254

* cited by examiner



US 8,402,109 B2

Sheet 1 of 11

Mar. 19,2013

U.S. Patent

i

wm»\ﬁ ﬁ

{ 8inbBiy

sugLBlLl

uw YIOMIBN

pS e

vii”

_ PoRIail
| SIOMIPN

sng e d

801

53

/ ™,
sfiviolg
LHENSISIBY
.,

abeins
SHBIOA |

. J

001



US 8,402,109 B2

Sheet 2 of 11

Mar. 19,2013

U.S. Patent

012

80¢

602

yZ 8.nbi4

WBpow
150
w0z 10 81gBD

M e
7
HN I

18LLBU|

9027

VAV %

_,QF\

ieindwon
dopiseqy

s
s e
L L AR,




US 8,402,109 B2

Sheet 3 of 11

Mar. 19,2013

U.S. Patent

£ Od %gwam

ge enbiy

snogiann
ﬁ@ﬁmz .w\\




US 8,402,109 B2

Sheet 4 of 11

Mar. 19,2013

U.S. Patent

¢ ainbi4

BULLIEAA

w@w\d\

o STYOR
L0e-~ \M s JUBWIYORNE pajdasislu SIugng
o >

208

a

908

N

4

[

i
: M\ SNHA B 53 spucdss
343 & m@m\ A P &
=
£oe~

JUBLILOBTY LWOA
O BNAA R

4

o
{8

90e

",

N,

ol

f Sevesnsses

A,

908 -

JEE

B

ueog snuA-wy | |\

mcm, , 3

908~

X oe

od



US 8,402,109 B2

Sheet 5 of 11

Mar. 19,2013

U.S. Patent

 0inbi4
Buiuep
_,:NM L
, 80P
OLp
5 —
- - |
_,9;, | \.%\W
b  p0Y 80
BN\ €9 ,
SOV
20t _ \ ¥
\W iail
LoV >
@%\ =

1BAIBS QBAA OO UUD

80y 8OV

NN

auibusg /

UBos @mﬁmmm,?d

80v~
80V

M/ 00y



US 8,402,109 B2

Sheet 6 of 11

Mar. 19,2013

U.S. Patent

G 2nbig

!

s 221S
{RUCIIDDR Ljiw pURLILIOD |61
SYRISUBL DUR DIBAMIOL ‘BABOSH

A

sabegseul
SIEIUND SI9BIAIRIS

&

PUBLILIOS SHEY G50
PABMIC] DUR SAIB0DH

-~

d0L 011 pod pUnCgING uo A
UORBLNSSD ) UoDBULIs usd(y

i

£05 ~

dS} woy
Hews-o s1sanbss jerd pew-3

&

205

40 041 Bod pUnogInG uo

sucnosuues Bunuoow Bundaony




US 8,402,109 B2

Sheet 7 of 11

Mar. 19,2013

U.S. Patent

g6 anbi

A *
GG, | SHA F 83A | SFA
WY S 30} Bumonas \,méc o WY S 10} 2MDnns Bpesy wieng Busiyg o) simonss
. shessow spmisw sishjelus Zabs shossou spoodsul sBABUE e Japyaeng bUESSHU SIDBUSW
on wianed Apog sBessamy waped jepeay slrgsown Gh sisAmiie pnes ALSE
0 ta3a L5 boms
X x\ ¢ LooBesnReul - %1 i
T TELTT) £ VLY ’ % I
\\ N mMm%{{m mw\wgi @ wwmsgﬁ LONOIT IDIUOT) BIISIT . AL \\ ™,
3 4 1 Rt P8 )
»m%ﬁm &&M wv mmmmw& um“ 4 w fw&mr@_ﬁwrw U Aijtes JURISIG UE SSDIPPY S ! PBILIB(Y \W
Ny 4 REBIKG YL SUME £ 200 HBLL-0 IBDRBY O] BUL 5] sz P
g smonmapide Buns oy 5 p £26-" k
o o SsT
NGy sn SRIA 7 ON
ATAINGE BN ;
wﬂa.smmw Amw@ mww m@m BIA! Soy xe) sty auy ur As
JPR— e B R »  WEKSING UE UILIOHSSeIIDE
S34 | wedsu o eases Duues [ o ORI SBPEE WS B §
snEA 4111 BlowB: Asnry # . Y 10I4 B4 5 v
1 + Y e 534
PG g T u
T83AL ToN
LBRERULRRRE peydinusun
gyt At safiesseur yienog 480 ay smner Ayl Ana | BEA
oy sapesy abvusew oddy = ISR UE OIODNSSRITR
IO UL W TUBIEIG L peus-a sopesy wilg ey 8 [
poxuapednr Duing sl 8 el ¥ean
2L
b 8 FL7H
aror~] @ BRSO OABLLEY
4
O
LEDt D v selag 534
PR afiveEBiy g By S3A mx {437 ©1 U 300y
305 PUPWNGS H L34 55000 " piep obestaw dABIeY
ﬁ HWEIS DUE SMT001 TDISMED 4 Il

&



US 8,402,109 B2

Sheet 8 of 11

Mar. 19, 2013

U.S. Patent

L 3
. Apoy afiessaiy
ows spphuey | €29
IDIHO0L ORVCD |
22g 129 wawslivgeas |
e BOBLS ;{\efw s BN wn‘m&m
o ga R, hd » @2 \ T y g
JBLIGE B Fon m\ 9 ot
g myechuoy s oo g
LR SNt s yoalan: «@ . 4B _f gpemEep
P ¢ = 40 pi b 5 m }
1BPLISE WA ovn ut [Wyds] s08ld [gqy ] walons Doy fegpd ﬁ«nm
HRULB [USE Pl A3
saat  on _ | oeds aeds 1 yig
LU £LINGY .- «mmumwmtw BUL U BT WN\W IRy M.w.m.mp
S BIUIA UBLM  jaemet 57 BTHIA LB noMIRAG-Y BoRg (9% - .
s on v HEE o Uty i ToM . 808 ON - 808
1BpUDE Yoty wardinoy yely 17187 £
Tk , e sk eolans m_ﬁ . LOUY . LEATHBP
Gie” 7 ga4 8187 A WSO 808l (gga gonlans B2 foay HETY
spephuey L 0i3 1 R : 74
Hraniimm f ‘ ; i LIGHBLLO ‘
t A Ry Py . UHOLS
LIBIoB) Apoq abimesauw ww‘m »Mvmv& saeds Eanbifoy alessow
SEULA i o RIue] o IS Taan sopeaybeg | LOISSEE 10000
Ao sfiessas Bumiem .xuw WRAS A BIUd NP Yore 384 ¢
i PR uoy weny | 4087 s b ey e
SNHA UBBID Bumsiyg e B poeigns aul {ad . 2
. £ it f i} ooe o sley le 0 Aus
.:.w@\\f LIRRLL mw.@L». H )wiuwmwlm&w m\wnw iGS3A w{&mQBQ mvﬂh, 34 51232551 ﬁm 2§21
e s e gog 2057 A
S0 ) BOHBALORR
fulifoy obessaw
LOISBBE 1080
; A
oy e T
r@m\ \\3&.!./,“ »\,\ .\u./...~
)
v w A PO DAY
Vo ainbid (a5~ ) powen)

N S
H ¥

H




US 8,402,109 B2

Sheet 9 of 11

Mar. 19,2013

U.S. Patent

1297

18AI8S 41 LM 910wsal
0] UOIBLLIOJI LOISSOS
BuiBbo] pe1osjios pusg

4

g9 a.nbi4
UoISSas
oreuiuLa) pue umopinys ¢ |
929"
529"

USIHO WO
pUBLIWIOS [IND pJemio-]

1

o

a0 0} sbessaw plemio-

!




U.S. Patent

Mar. 19, 2013 Sheet 10 of 11

101

Y

US 8,402,109 B2

Volatile RAM Memory 106

CKerneI 703, RFU M)

Flash Memory Firmware

Storage 107/108
( Firmware 702 )

h

Y

s

Data Bus 104

N

3

h

A

Wireless Link
[Processor M} [Interface 13

)

Remote Network
Interface Card 114

Figure 7A

101

N

( Firmware xxx

A

Volatile RAM Memory 106
(Kemel 703, RFU M)

Data Bus 104

Flash Memory Firmware
Storage 107/108

A \ 4 A
Processor Wireless Link Ethernet LAN Remote
105 Interface 113 Interface Card 113 NIC 114

Figure 7B



U.S. Patent Mar. 19, 2013 Sheet 11 of 11 US 8,402,109 B2

.~ 800

F.

Contain 801 a version 803 of firmware 802

\ 4

Remotely request 804 a firmware update 805 .

Receive 808 a (responsive) firmware image 809

Destructively 811 overwrite flash memory chunks |

"l Reboot 812 and go live 813 with upgraded firmware |_,

"l Write-flash-and-then-write-kernel 814 with firmware

Y

Write-both-flash-and-RAM-disk 815 with firmware

Receive 816 chunks 810 out of executable order

Y

Re-order 817 firmware chunks into flash memory ||

Check 818 firmware image size vs. chunks, flash |_]

Y

Remap 819 ROM address 820 to RAM address 821

Y

Decompress 822 data from flash, copy 823 to RAM |_,

> Overwrite 824 flash with settings 825 from file 826

> Overwrite 827 file with settings from flash N

Receive 828 billing status inactive indication 829 |_

v

Redirect 830 browser 831 to activation page 832 ||

Send 806 request 807 for firmware update

Y

Authenticate 833 firmware image .

Figure 8



US 8,402,109 B2

1
WIRELESS ROUTER REMOTE FIRMWARE
UPGRADE

RELATED APPLICATIONS

The present application claims priority to, and incorpo-
rates, U.S. patent application Ser. No. 13/015,053 filed Jan.
27, 2011, and U.S. patent application Ser. No. 11/350,905
filed Feb. 8, 2006, which is now U.S. Pat. No. 7,904,518, and
U.S. Provisional Patent Application Ser. No. 60/653,163 filed
Feb. 15, 2005.

BACKGROUND

To aid understanding of the technical context of the inno-
vations claimed herein, several references are discussed
below. This discussion is meant to help promote a full and
accurate examination of the claims presented.

However, there are also limits on the inferences one can
properly draw from this discussion. These references were
identified with the present claims in mind, and the observa-
tions made here about the references are likewise guided by
the present claims. One of skill would not necessarily have
combined any of these references or made such observations
without the benefit of hindsight. The mere fact that two or
more of the references are discussed here is not evidence ofa
motivation to combine those references at the time of inven-
tion without using the present claims as a blueprint.

Moreover, the inclusion of a reference in this discussion is
not a blanket acceptance of every statement made in the
reference; what the references recite is not necessarily cor-
rect. Each reference must also be considered independently of
this discussion to fully understand the reference’s teachings,
asonly a brief space is allotted to any given reference here and
each reference speaks for itself. The reference recitations
noted here are not meant to be a full description, or even a
complete overview or summary, of the teachings of any ref-
erence. Other references may also be considered worthy of
attention.

Also, a reference may use terms differently than they are
used here in describing the innovations claimed, and two
different references may use the same term differently. Nor is
the inclusion of a reference in this discussion evidence that
the reference is enabling with regard to a particular claim, or
indeed, with regard to any claim that is presented here.

The following discussion of references begins by pointing
out some things that are not present in any of the references.
These gaps in the references are worthy of attention, but they
are merely examples of how the references could be consid-
ered. In particular, it does not follow that something X is
present in the references merely because the discussion did
not say that X was missing from the references.

Bearing these guidelines in mind, the reference discussion
will now proceed.

None of these references mention an “executable order” for
“chunks” of a firmware image. None recite “re-ordering” or
“re-sequencing” firmware image chunks that were received in
some order other than the executable order.

With regard to destructively overwriting flash memory
chunks, the only mention of “destructive” in any of these
references is in Zimmer (2005/0021968) paragraph [0048]
which recites a “non-destructive reset.”

None of these references recite a “wireless router” as a
device whose firmware will be upgraded. Only Georges
(2008/0156178) mentions any of the “802.11” wireless com-

20

25

30

35

40

45

50

55

60

65

2

munication standards, and that is not in connection with
router firmware upgrades because Georges does not mention
“routers” at all.

None of these references mention “checking” to see
whether the size of a firmware image is at least two chunk
sizes smaller than a device’s flash memory storage capacity.

With regard to remapping a ROM memory address to a
RAM memory address in the context of a firmware upgrade,
only two of the references mention “remapping’ an address in
any context, namely, Moore, et al. (2006/0047920) and
Shamoon, et al. (2004/0107356). However, Moore’s Abstract
directs attention at how to “enable one-time or few-time pro-
grammable memories to work with existing consumer elec-
tronic devices (such as those that work with flash—an eras-
able, non-volatile memory) without requiring a firmware
upgrade . . . ” (emphasis added). Shamoon directs attention to
remapping for security. Shamoon [0310] recites “circuitry
which remaps some of the available memory space, so that, in
unsecure mode, the CPU cannot address secure memory loca-
tions.” Shamoon [0312] similarly recites “Some memory
space may be rendered off-limits to general purpose uses, for
example by remapping”.

With regard to writing firmware to both flash memory and
a volatile RAM disk, none of these references mention a
“RAM disk” or a “RAM drive”.

United States Patent Application Publication No. 2003/
0066062 by Brannock, et al. recites that a method for updat-
ing platform firmware is disclosed. Brannock further recites
that this capability is facilitated by a standard software
abstraction for a firmware storage device, known as Firmware
Volume (FV) that is managed through a Firmware File Sys-
tem (FFS). The FFS enables firmware files to be created,
deleted, and updated individually. The FFS also enables a
plurality of firmware files to be updated atomically by man-
aging file state information via state bits stored in a file header
of each firmware file, whereby an atomic change to a single
state bit simultaneously causes the FFS to use an updated set
of firmware files in place of an original set of firmware files.

United States Patent Application Publication No. 2004/
0083469 by Chen, et al. recites that an update method is used
in an optical disk system to update firmware information
stored in a firmware memory. Chen further recites that the
method includes fetching program code and an update pro-
gram routine from an update source, storing the program code
into a first buffer, storing the update program routine into a
second buffer, executing the update program routine stored in
the second buffer, writing the program code stored in the first
buffer into the firmware memory to update the firmware infor-
mation, and changing a value of a program counter of the
microprocessor such that the microprocessor executes the
program code stored in the firmware memory at a predeter-
mined location of the program code instead of executing a
next instruction in the program code located after the current
position of the program counter, and using the program code
as updated firmware information to control the optical disk
system.

United States Patent Application Publication No. 2005/
0027807 by Fengler, et al. recites that systems and methods
for facilitating peripheral device firmware installation are
disclosed. Fengler further recites that in one embodiment, a
system and a method pertain to transmitting a firmware avail-
ability notification, receiving a firmware download request,
and transmitting a firmware file to a peripheral device for
installation on the peripheral device. In another embodiment,
a system and a method pertain to receiving a firmware avail-
ability notification with a peripheral device, and providing a



US 8,402,109 B2

3

related notification to a user, the related notification being
provided by the peripheral device.

United States Patent Application Publication No. 2005/
0055595 by Frazer, et al. recites that a system for remotely
updating software on at least one electronic device connected
to a network is disclosed. Frazer further recites that the elec-
tronic devices have a non-volatile rewritable storage unit
divided into at least two partitions, one of which will contain
core firmware and the other of which will contain auxiliary
software. When an update is received at the device, the
updated core firmware is written to overwrite the partition in
the rewritable storage unit that contained the auxiliary soft-
ware. When this is completed and verified, the previous ver-
sion of the core firmware stored in the storage unit is disabled
from execution by the device. Next, the updated auxiliary
software is written to overwrite the old version of the core
firmware. When this write is complete, the device determines
a suitable time for it to be rebooted to execute the updated
software. In another embodiment, the present core firmware
in the device is copied from the partition it is in to the other
partition, overwriting the auxiliary software stored there. The
new core firmware received to update the device is overwrit-
ten into the first partition, the old copied core firmware being
present in case of an upgrade failure, and upon a successful
update of the first partition, the auxiliary software is written to
the second partition, overwriting the copied old core firm-
ware. In this manner, the position of the core firmware and
auxiliary software within the partitions is preserved during
normal operation of the device.

United States Patent Application Publication No. 2008/
0156178 by Georges, et al. recites that systems and methods
for creating, modifying, interacting with and playing music
are provided, particularly systems and methods employing a
top-down process, where the user is provided with a musical
composition that may be modified and interacted with and
played and/or stored (for later play). In an unusually long
Abstract which is not fully reproduced here, Georges also
recites that the system preferably is provided in a handheld
form factor, and a graphical display is provided to display
status information, graphical representations of musical lanes
or components which preferably vary in shape as musical
parameters and the like are changed for particular instruments
or musical components such as a microphone input or audio
samples. An interactive auto-composition process preferably
is utilized that employs musical rules and preferably a pseudo
random number generator, which may also incorporate ran-
domness introduced by timing of user input or the like, the
user may then quickly begin creating desirable music in
accordance with one or a variety of musical styles, with the
user modifying the auto-composed (or previously created)
musical composition, either for a real time performance and/
or for storing and subsequent playback. The remainder of the
Abstract may be read in Georges itself.

United States Patent Application Publication No. 2006/
0143475 by Herbert, et al. recites that a method according to
one embodiment may include: receiving a first encrypted
signal at a server of a computing network, the first encrypted
signal comprising firmware encrypted by a first encryption
algorithm having a first complexity level; sending a second
encrypted signal over the computing network to at least one
managed client in response to the first encrypted signal, the
second encrypted signal comprising the firmware encrypted
by asecond encryption algorithm having a second complexity
level, wherein said first complexity level is greater than said
second complexity level; and updating existing firmware of
the at least one managed client in response to receipt of the
second signal at the at least one managed client. Herbert

20

25

30

35

40

45

50

55

60

65

4

further recites that many alternatives, variations, and modifi-
cations are possible without departing from this embodiment.

United States Patent Application Publication No. 2005/
0097542 by Lee recites that a firmware update method is
disclosed. First, a tag is written to a firmware storage device.
Next, first firmware in the firmware storage device is replaced
by second firmware. Ifthe replacing step is successful, the tag
is deleted. Before the execution of the second firmware, a
verification operation is executed. If the tag is not present, the
second firmware is executed. If the tag is present, an abnor-
mity processing procedure is executed. The abnormity pro-
cessing procedure terminates of execution of the second firm-
ware, reads third firmware via an interface, and replaces the
second firmware with the third firmware.

United States Patent Application Publication No. 2005/
0039178 by Marolia, et al. recites that aspects of an invention
may be seen in a system and method for downloading update
packages into an electronic device communicatively coupled
to a carrier network. Marolia further recites that the system
may facilitate the update of firmware/software in the elec-
tronic device. Different protocols may be utilized for discov-
ery and download of update packages. Also, different proto-
cols may be utilized for provisioning and for subsequent
downloading of update packages.

United States Patent Application Publication No. 2002/
0073304 by Marsh, et al. recites that a system and a method
that uses a software application operable under a current
firmware/operating system configuration to install a new
firmware version without “compromising” the operating sys-
tem are presented. Marsh further recites that the software
application may configure a computer system to install a
plurality of software fixes configured to enhance functional-
ity under a new firmware/operating system environment after
the firmware has been successfully upgraded. Such function-
ality enhancements may be associated with external periph-
erals, as well as, input/output circuit cards, processors, and
the like. In addition, the software application may configure
the computing device to “boot” under the new firmware/
operating system environment upon subsequent system ini-
tializations. Furthermore, the software application permits
the distribution of firmware upgrades via a network. The
capability to install firmware remotely permits a system
administrator to “push” the new firmware to a plurality of
network coupled computing devices, thus avoiding manual
intervention at each device.

United States Patent Application Publication No. 2006/
0047920 by Moore, et al. recites that embodiments described
therein can be used to enable one-time or few-time program-
mable memories to work with existing consumer electronic
devices (such as those that work with flash—an erasable,
non-volatile memory) without requiring a firmware upgrade,
thereby providing backwards compatibility while minimiz-
ing user impact. Moore further recites that as such, these
embodiments are a viable way to bridge one-time or few-time
programmable memories with existing consumer electronic
devices that have flash card slots. These embodiments also
allow future consumer electronic devices to be designed with-
out updating firmware to include a file system customized for
a one-time or few-time programmable memory.

United States Patent Application Publication No. 2003/
0236970 by Palmer, et al. recites that in a data processing
method and system a mass storage device (DASD) of a data
processing system is partitioned to include a service partition.
Palmer further recites that the service partition is typically
located on a portion of the DASD beyond the highest address
accessible to the operating system and application programs.
The service partition will typically include the current ver-



US 8,402,109 B2

5

sions of peripheral device firmware, any BIOS extensions,
and device drivers. During a system boot, the boot code will
invoke a peripheral device call that reports the device’s firm-
ware version level to compare the firmware versions of all the
peripheral devices against the archived firmware versions
stored in the service partition. If a mismatch is detected, the
system boot will typically force an update of the peripheral
device firmware to the level that is known to be good. Any
such firmware updates are recorded in a log that is accessible
to system management applications. Any revisions to firm-
ware may be imaged into the service partition so that the
revised version will be incorporated into the peripheral device
itself during the next subsequent system boot.

United States Patent Application Publication No. 2004/
0015941 by Sekine recites that an information-processing
apparatus includes a nonvolatile memory device configured
to store firmware. Sekine further recites that the information-
processing apparatus has a first unit for issuing an instruction
to make an operating system execute a shutdown process, and
to update the firmware, stored in the nonvolatile memory
device, after the operating system has completed the shut-
down process. The information-processing apparatus also has
a second unit, responsive to the instruction to update the
firmware, for updating the firmware only after the operating
system has completed the shutdown process.

United States Patent Application Publication No. 2004/
0107356 by Shamoon, et al. recites that a novel method and
apparatus for protection of streamed media content is dis-
closed. Shamoon further recites that in one aspect, the appa-
ratus includes control means for governance of content
streams or content objects, decryption means for decrypting
content streams or content objects under control of the control
means, and feedback means for tracking actual use of content
streams or content objects. The control means may operate in
accordance with rules received as part of the streamed con-
tent, or through a side-band channel. The rules may specify
allowed uses of the content, including whether or not the
content can be copied or transferred, and whether and under
what circumstances received content may be “checked out”
of'one device and used in a second device. The rules may also
include or specify budgets, and a requirement that audit infor-
mation be collected and/or transmitted to an external server.
In a different aspect, the apparatus may include a media
player designed to call plugins to assist in rendering content.
A “trust plugin” is disclosed, along with a method of using the
trust plugin so that a media player designed for use with
unprotected content may render protected content without the
necessity of requiring any changes to the media player. In one
aspect, the streamed content may be in a number of different
formats, including MPEG-4, MP3, and the RMFF format.

United States Patent Application Publication No. 2005/
0021968 by Zimmer, et al. recites that a method for providing
a secure firmware update is disclosed. This Zimmer applica-
tion further recites that a first authentication credential is
securely stored on a platform in an encrypted form using akey
generated by a secure token, such as a trusted platform mod-
ule (TPM). Typically, the authentication credential will iden-
tify a manufacture and the operation will be performed during
manufacture of the platform. A configuration of the platform
is “imprinted” such that an identical configuration is required
to access the key used to decrypt the first authentication
credential by sealing the key against the platform configura-
tion. During a subsequent firmware update process, a firm-
ware update image containing a second authentication cre-
dential is received at the platform. If the platform
configuration is the same as when the key was sealed, the key
can be unsealed and used for decrypting the first authentica-

20

25

30

35

40

45

50

55

60

65

6

tion credential. A public key in the first authentication cre-
dential can then be used to authenticate the firmware update
image via the second authentication credential.

United States Patent Application Publication No. 2005/
0289646 by Zimmer, et al. recites disclosure of a method of
copying virtual firmware smart card code from a first secured
memory in a system and loading the virtual firmware smart
card code into a second secured memory in the system so that
the code may be run on a microprocessor to provide smart
card services to the system.

SUMMARY

Various systems/devices and methods for remotely updat-
ing router firmware are described herein. For example, some
embodiments provide a method for upgrading a wireless
router. A flash memory in the wireless router contains a first
version of router firmware. The router firmware includes
instructions to be executed by a processor of the wireless
router, and the firmware also includes data. The wireless
router sends a request for a firmware update, the request being
sent from the wireless router over a network connection
toward a server. The wireless router receives over the network
connection a response to the request for a firmware update,
the response including at least a firmware image for a second
version of router firmware which differs from the first version
of router firmware by reason of containing at least one firm-
ware change (a firmware change being a difference in firm-
ware data and/or a difference in firmware instructions). The
firmware image includes a plurality of chunks, each chunk
having a size which is no greater than a predetermined chunk
size. The wireless router destructively overwrites the first
version of router firmware in the flash memory with the
second version of router firmware. The destructive overwrit-
ing proceeds in a chunk-wise manner such that prior to being
overwritten by all of the chunks the flash memory contains
neither a complete copy of the first version nor a complete
copy of the second version of the router firmware. The wire-
less router is configured to run whatever version of router
firmware is in the router’s flash memory after being rebooted.
The wireless router reboots, thereby making the firmware
change(s) go live.

Some embodiments include writing the flash memory and
then writing a kernel memory. That is, the wireless router
destructively overwrites the first version of router firmware in
the flash memory with the second version of router firmware,
and then writes a copy of content of the second version of
router firmware to a kernel memory in a volatile RAM
memory in the wireless router before going live with
upgraded firmware.

Some embodiments include writing both flash memory and
avolatile RAM disk. That is, the wireless router destructively
overwrites the first version of router firmware in the flash
memory with the second version of router firmware, and also
writes a copy of content of the second version of router
firmware to a RAM disk in a volatile RAM memory of the
router.

In some embodiments, the firmware image chunks have at
least one predetermined executable order, namely, an order in
which the chunks are arranged in an executable copy of the
firmware image. The step of receiving a responsive firmware
image receives the chunks in a volatile RAM memory in the
wireless router in an order which differs from the executable
order, and the method includes re-ordering the chunks such
that the step of destructively overwriting flash memory
chunks arranges chunks in the flash memory in the executable
order.



US 8,402,109 B2

7

In some embodiments, the firmware image has a size and
the flash memory has a storage capacity. The method includes
the wireless router checking to see whether the size of the
firmware image is less than a predetermined maximum firm-
ware image size. The predetermined maximum firmware
image size is at least two chunk sizes smaller than the flash
memory storage capacity.

Some embodiments include the wireless router remapping
a ROM memory address in the router to a RAM memory
address in the router. Some include the wireless router
decompressing data held within the flash memory in the
router and copying the data to a RAM-based file system in the
router; some include both steps.

In some embodiments, before going live with upgraded
firmware, the wireless router overwrites at least a portion of
the flash memory with user-definable configuration settings
from a text file. Then after going live with upgraded firmware,
the wireless router overwrites the text file with the configu-
ration settings from the flash memory.

In some embodiments, the response received by the wire-
less router includes an indication that a billing status is inac-
tive, and the method includes redirecting a web browser to a
billing activation page.

In some embodiments, the firmware image chunks have at
least one predetermined executable order, namely, an order in
which the chunks are arranged in an executable copy of the
firmware image. The step of receiving a responsive firmware
image receives the chunks in the wireless router in an order
which differs from the executable order. The method includes
re-ordering the chunks such that the step of destructively
overwriting flash memory chunks arranges chunks in the flash
memory in the executable order. The method also includes
writing a copy of the chunks to a kernel memory in the
wireless router.

Some embodiments described herein provide a remotely
upgradable wireless router. The wireless router includes a
processor, volatile RAM memory, a network interface card, a
wireless link interface, and a flash memory. The volatile
RAM memory is in operable communication with the pro-
cessor and contains a kernel. The kernel includes data and
including instructions which upon execution by the processor
at least partially control operation of the wireless router. In
particular, the kernel contains a flash memory device driver.
The network interface card is connectable to a TCP/IP net-
work such as the Internet for two-way data communication of
the wireless router with a remote server. The network inter-
face card is also in operable communication with the volatile
RAM memory. The wireless link interface is connectable to a
wireless network for two-way data communication of the
wireless router with a local computer, and is also in operable
communication with the volatile RAM memory. The flash
memory is in operable communication with the processor by
use of the flash memory device driver. The flash memory
contains a version of wireless router firmware, which
includes data, also includes and instructions which upon
execution by the processor at least partially control operation
of the wireless link interface.

In some embodiments, the wireless router is further char-
acterized in that upon execution of at least some of the instruc-
tions by the processor, the wireless router will do the follow-
ing: send a request for a firmware update over the network
interface card to the remote server, receive over the network
interface a wireless router firmware image, write content of
the wireless router firmware image to the flash memory, write
content of the wireless router firmware image to the kernel
memory after writing the content to the flash memory, and
then reboot, thereby passing control to at least some of the

20

25

30

35

40

45

50

55

60

65

8

wireless router firmware content that was written to the flash
memory. In some embodiments, the wireless router does not
necessarily send a request for a firmware update, but may
instead receive the firmware update without having first
requested it.

In some embodiments, the flash memory has a storage
capacity, and the wireless router firmware image includes a
plurality of chunks, each chunk having a size which is no
greater than a predetermined chunk size and is less than
one-eighth the flash memory storage capacity. The wireless
router upon execution of at least some of the instructions by
the processor destructively overwrites the version of wireless
router firmware in the flash memory in a chunk-wise manner
with chunks of the wireless router firmware image.

In some embodiments, the wireless router firmware image
includes a plurality of chunks which have at least one prede-
termined executable order, namely, an order in which the
chunks are arranged in an executable copy of the wireless
router firmware image. The wireless router upon execution of
at least some of the instructions by the processor receives the
chunks in the RAM memory in an order which differs from
the executable order, and re-orders chunks to arrange the
chunks in the flash memory in the executable order.

In some embodiments, the remotely upgradable wireless
router includes a ROM memory address remapped to a RAM
memory address in the router. In some, the wireless router is
joined with a text file containing user-defined configuration
settings, and the flash memory contains a copy of the user-
defined configuration settings.

In some embodiments, the wireless router firmware image
has a size and the flash memory has a storage capacity. The
wireless router firmware image includes a plurality of chunks.
Each chunk has a size which is no greater than a predeter-
mined chunk size and is less than one-eighth the flash
memory storage capacity. The size of the wireless router
firmware image is at least two chunk sizes smaller than the
flash memory storage capacity.

In some embodiments, the wireless router upon execution
of at least some of the instructions by the processor performs
authentication to verify validity of the wireless router firm-
ware image.

In some embodiments, the wireless link interface conforms
with at least one 802.11 standard for wireless communica-
tions. In some, the wireless router includes a 10/100 Mbps
local area network interface card to provide a data communi-
cation connection to a local area network, and the kernel
includes instructions which upon execution by the processor
at least partially control operation of the local area network
interface card. In some embodiments, the kernel includes
open source operating system code.

The examples given are merely illustrative. This Summary
is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used to
limit the scope of the claimed subject matter. Rather, this
Summary is provided to introduce—in a simplified form—
some concepts that are further described below in the
Detailed Description. The innovation is defined with claims,
and to the extent this Summary conflicts with the claims, the
claims should prevail.

DESCRIPTION OF THE DRAWINGS

A more particular description will be given with reference
to the attached drawings. These drawings only illustrate
selected aspects and thus do not fully determine coverage or
scope.



US 8,402,109 B2

9

FIG. 1 depicts a schematic diagram of a system and device
for processing network content;

FIG. 2A illustrates an exemplary configuration to protect a
single desktop computer;

FIG. 2B illustrates an exemplary configuration to protect a
local area network (LAN), which includes multiple desktop
computers;

FIG. 3 illustrates an exemplary operating sequence of a
system and device configured to process email traffic;

FIG. 4 illustrates an exemplary operating sequence of a
system and device configured to process various web content
viewed by a user using the user’s computer;

FIGS. 5A, 5B, 6A and 6B provide more detailed illustra-
tion of an internal operating sequence of a system and device;

FIGS. 7A and 7B depict alternative schematic diagrams of
a wireless router system and device for processing network
content, include one wireless router configuration with an
Ethernet 10/100 Mbps local area network interface card, and
one configuration without that network interface card; and

FIG. 8 is a flow chart illustrating steps of some method
embodiments for remoter firmware update.

DETAILED DESCRIPTION

Observations on Focus

It is not unusual for a child application to set forth claims
which have a different focus than the claims of a parent
application. In the present situation, provisional application
No. 60/653,163 contains 148 pages of a disclosure which was
incorporated and built upon in the application that ultimately
issued as U.S. Pat. No. 7,904,518. The present document
incorporates and builds upon both those ancestor applica-
tions. Claims ofthe 518 patent focus in part on filtering email
message content, but the underlying applications are not lim-
ited to that topic. The claims presented here are differently
focused than the *518 patent claims, but an attentive reader
will find common subject matter in the three applications. For
example, the present document is titled “Wireless Router
Remote Firmware Upgrade,” the * 163 provisional discusses a
Remote Flash Updater utility capable of writing firmware to
flash memory, and the ’518 patent Abstract states that an
“appliance is provided with an automatic remote updating
capability, wherein the software and data used by the appli-
ance can be updated remotely via a network.” The *518 patent
also teaches that some embodiments of the appliance include
functionality of a network hub or router.

Observations on Meaning and Scope

Reference will now be made to exemplary embodiments
such as those illustrated in the drawings, and specific lan-
guage will be used herein to describe the same. But alterations
and further modifications of the features illustrated herein,
and additional applications of the principles illustrated
herein, which would occur to one skilled in the relevant art(s)
and having possession of this disclosure, should be consid-
ered within the scope of the claims.

The meaning of terms is clarified in this disclosure, so the
claims should be read with careful attention to these clarifi-
cations. Specific examples are given, but those of skill in the
relevant art(s) will understand that other examples may also
fall within the meaning of the terms used, and within the
scope of one or more claims. Terms do not necessarily have
the same meaning here that they have in general usage, in the
usage of a particular industry, in a given reference document
discussing others’ work, or in a particular dictionary or set of
dictionaries. Reference numerals may be used with various
phrasings, to help show the breadth of a term. Omission of a
reference numeral from a given piece of text does not neces-

20

25

30

35

40

45

50

55

60

65

10

sarily mean that the content of a Figure is not being discussed
by the text. The inventors assert and exercise the right to their
own lexicography. Terms may be defined, either explicitly or
implicitly, here in the Detailed Description and/or elsewhere
in the application file.

Reference will be made to the accompanying drawings.
The drawings show by way of illustration, and not by way of
limitation, specific embodiments and implementations con-
sistent with principles and possibilities presented herein. The
mere fact that the same reference number is used in two places
in the figures and/or the text does not imply that the refer-
enced item is identical in every respect in each instance. For
example, appliance 101 shown in FIG. 1 is not necessarily
identical in every respect with appliance 101 shown in FIG.
2A, or with appliance 101 shown in FIG. 2B, and so on. The
various implementations are described in sufficient detail to
enable those skilled in the art to practice the invention and it
is to be understood that other implementations may be uti-
lized and that structural changes and/or substitutions of vari-
ous elements may be made without departing from the scope
and spirit of the claimed invention. The description is, there-
fore, not to be construed in a limited sense. Additionally,
various embodiments described may be implemented in the
form of a software running on a general purpose computer, in
the form of a specialized hardware, or combination of soft-
ware and hardware, except as otherwise required by the claim
being considered.

Throughout this document, use of the optional plural “(s)”
means that one or more of the indicated feature is present. For
example, the term “firmware change(s)” means “one or more
firmware changes” or equivalently “at least one firmware
change”.

As used herein, “overwriting” a memory means overwrit-
ing at least a portion of the memory. That is, overwriting a
memory allows overwriting the entire memory, but does not
require overwriting the entire memory.

Asused herein, “updating” and “upgrading” are used inter-
changeably.

As used herein, a “chunk” of flash memory is the smallest
amount of memory that is overwritten to perform a single
flash memory write. In a typical flash memory, chunk size is
128 Kbytes, but different vendors may use different chunk
sizes. A flash memory chunk is sometimes called a “block,”
but care is called for because attention to context reveals that
the word “block” is also used in other ways, e.g., in discussing
filesystem data structures.

Remote Flash Updater

In some embodiments, a Remote Flash Updater (RFU) is a
utility capable of writing to flash memory, a type of non-
volatile memory storage, with an image file gathered off a
HTTP server. With reference to FIGS. 7A, 7B, and 8, for
example, in some embodiments the RFU 701 is a utility
capable of writing firmware 702 to flash memory 107 or other
firmware storage 108. The RFU may be implemented to run
with a kernel 703, such as an open source operating system
kernel.

In one embodiment, the RFU 701 is a Linux 2.4 kernel
based user-land software running on an ARM based chipset.
It is written in ANSI C programming language compiled
cleanly with an ARM gcc compiler with the—Wall and—O02
compiler flags. RFU 701 development may be guided by
familiarity with flash memory code source samples including
source code for a flash kernel driver, and a library implemen-
tation that interfaces with the flash kernel driver. One RFU
701 uses a C library with flash [/O functionality. One RFU
binary name is RFUpdater.



US 8,402,109 B2

11

In one embodiment, the Linux 2.4 system implements a
ROM to RAM remap 819 for file system access. Upon boot,
the boot loader decompresses 822 data held within flash
memory and copies 823 itinto a RAM based file system. After
the RFU 701 updates flash memory 107 or other firmware
storage 108 with an image file, the system 101 will reboot 812
in order for the changes to be live. Secure, cross-standard and
compact programming methodologies are used.

One Updater 701 method includes the following steps,
which are exemplary rather than the sole possible implemen-
tation of teaching herein. Begin updater execution. Calculate
kernel 703 and ramdisk flash memory offset and size. Initial-
ize POST update variables. Issue an HTTP 1.0 POST request
on update.akalink.net port 80/TCP. Read header response,
continue if new update is available. Read header response,
image file size >100 KB and <3.5 MB. Calculate kernel and
ramdisk flash memory offsets from image file. Write 815
image file to 128 KB blocks of RAM (write kernel and ram-
disk separately). Re-order 817 RAM blocks in received order.
Authenticate 833—if image file checksum is valid, continue.
This is a less than 180 second cycle. Perform overlapping
steps to re-program flash memory starting with kernel fol-
lowed by ramdisk (a kernel-first approach 814): Erase next
block chunk of flash, write next block chunk to flash from
RAM, free up RAM block chunk. Reboot 812 system.

In some embodiments, a purpose of the remote flash
updater 701 is to write to flash memory 107 or other firmware
storage 108 an image file upon invocation, the image file
being gathered remotely from a HTTP site.

During a process of downloading the image file off the
HTTP server, some embodiments require the image file to be
chunked down in 128 KB memory blocks since the system
101 won’t be able to allocate 3.5 MB of memory in a single
allocation. This option is dynamic for tuning purposes. Block
re-ordering 817 is done afterwards to validate the image
checksum.

Some embodiments utilize already existent flash library
functions to achieve the result of re-programming flash
memory; they don’t require re-writing a full flash implemen-
tation from scratch.

In some embodiments, the image file contains the kernel
image and the ramdisk image embedded as one. Therefore,
byte offsets headers during the HT'TP session are provided in
order for the kernel image and ramdisk image to be written to
the proper flash memory 107 or other firmware storage 108
area allocated for their usage.

During the process of receiving 808 the image 809 file off
the HTTP server and writing the image file to flash memory,
some embodiments perform basic authentication 833 to
verify if the image file is valid.

In some embodiments, the maximum size of flash memory
an embodiment is utilizing is 4 MB. 256 KB of memory is
reserved with another 256 KB memory of free space, there-
fore only 3.5 MB is allocatable to flash memory.

In some embodiments, the kernel image is written to flash
memory starting from 0x10000 to the size of 0xO007FFFF.
The ramdisk image is written to flash memory starting from
0x90000 to the size of the image.

In some embodiments, the flash library and flash kernel
library header files provide information regarding flash
memory offsets, instructions and function. An implementer
may study the flash source code provided along with this
document in order to write this software. Along with the
source code, ethloader.c is software that remotely updates
flash memory by passing it a file name, kernel image or

20

25

30

35

40

45

50

55

60

65

12

ramdisk image, with or without specifying length. It could be
a good source of reference to utilize as it can broaden under-
standing and avoid confusion.

In some embodiments, after the updater 701 is executed, it
will initialize all variables regarding kernel and ramdisk
memory area begin and end offsets and anything else related
to that in order to know where to write what in what area, sizes
otf'blocks, how many blocks to write, etc. It will then initialize
aHTTP POST request 804 to be sent to update.akalink.net on
port 80 via TCP/IP (of course, other websites will be used by
other vendors). The socket timeout is 5 seconds, and 15 sec-
onds for a returned response.

An example of a POST request:
action=update
name=hcube
item=image

An example of a POST response:

X-Update-Length: 2097152<-Length of image

X-Update-Offset: 668402<-Last byte of Kernel Image from 0

X-Update-Cksum: 1808e84cfcbaf71cel073 cc418ff262a<-
cksum checksum

X-Update-Item: image<-Item requested

Image file data here<-Item requested data

If the X-Update-Item header value is “image” in such
embodiments, the embodiment knows it is dealing with the
correct item, and will proceed.

Some embodiments will then verify if this image file is
recent by verifying if the header X-Update-Cksum is different
than the Cksum cksum located in a file called “cksum” which
holds the contents of the image current cksum.

If so, processing proceeds to see if 818 the X-Update-
Length header value is less than 3.5 MB (3670016 bytes) and
larger than 100 KB (102400 bytes).

If so the embodiment will read and write the image file off
the HTTP server to various 128 KB RAM blocks in two
different groups one for the kernel image and one for the
ramdisk image, separating them based on the X-Update-Off-
set header value.

Before the Offset starting from 0 is the kernel image, and
after the offset is the ramdisk image. The X-Update-Offset
header value represents the last byte of the kernel image
starting from O byte, the rest till the last byte represents the
ramdisk image.

Some embodiments will re-order 817 the RAM blocks in
first received priority and see if 833 the cksum checksum of
the total image corresponds to the value of X-Update-Cksum.

Some embodiments will begin to re-program flash
memory, and will proceed to start writing the kernel byte
offset range rather than the ramdisk offset range afterwards.
Kernel image goes first (a kernel-first approach 814). This
process is on a block level not a byte level for performance
purposes.

In some embodiments, the procedures will erase the next
available 128 KB blocks in flash, will write to flash the next
128 KB available block chunk from RAM, and afterwards
will de-allocate the RAM block chunk memory written and
proceed in a cycle until the image file has been written.

Once the embodiment has completed writing the image file
to flash memory, it will reboot 812 the system in order for the
image file changes to go live.

In some embodiments, Online Upgrade Software will
destructively 811 upgrade the flash 107 on a chunk by chunk
basis unless adequate headroom exists to maintain a redun-
dant flash bank to hold the working software.

In some embodiments, a CubeUpdater is a built-in soft-
ware component whose purpose is to perform software
updates and check for new updates on a daily basis. The



US 8,402,109 B2

13

CubeUpdater will use 6 am, 12 am, 6 pm as hours during the
day to attempt to perform a software update. This is used in
case if the internet connectivity is down at 6 am, it will retry
at different hours.

When it comes time to perform the software update, it will
connect to update.spamcube.com on port 80 and issue a
HTTP POST with the following variables: mac=>00:20:ed:
25:34:37. Other websites and addresses will, of course, be
used in other implementations.

It will return the following answer if there is an error:

0: Invalid client identification
2: No updates available
3: Billing information is inactive

If the client billing is not active, the next time the client
browses a site, the router redirects 830 the browser to a billing
activation page, such as a user profile web page that informs
the user of billing status and invites the user to make payment
or other arrangements to activate service. In some embodi-
ments, an LED status on the router is also changed to reflect
the billing status and notify the client.

In some embodiments, the router upgrade includes soft-
ware generally, as opposed to firmware alone. The upgrade
software can be stored on a disk local to the router, e.g., in
compressed or archive format such as tar or gz format. After
extracting the software, setting/checking permissions, and
applying the upgrade, the router continues (sometimes with-
out rebooting) providing services to the user client.

Some embodiments include a software hierarchy, imple-
mented in a collection of file system directories. In a Linux
system or other UNIX-style system, for example, .0 object
code for the router may be kept in a /boot/modules directory.
Configuration files such as .conf and some .txt files, may be
keptin a/ust/local/<router>/conf directory, where <router>is
aname representing the router code, e.g., “hcube” or “RFU”.
A sysconfig database configuration file may be kept in a
/usr/local/<router>/conf directory, for example. User inter-
face .html files may be kept in a /ust/local/<router>/www/
include/tpl/html directory, for example.

A user interface in some embodiments includes pages in a
web browser, through which the router receives commands
(e.g., check for available updates) and notifies the user of
status (e.g., billing inactive, upgrade needed, upgrade avail-
able, upgrade installed). Familiar mechanisms may be used in
the user interface, e.g., HTML forms and form variables, CGI
files, HTML template pages, environment variables, configu-
ration files, and so on. Some embodiments perform a flash
update procedure on a WEB_CONFIG_FILE to write the
configuration file to flash memory storage.

Some embodiments update a text file containing configu-
ration settings to flash memory via CGI. The CGI file will be
executed on a system utilizing flash memory 107 as storage,
therefore this functionality is used to keep updated configu-
ration settings in memory after a system reboot. In some
embodiments, the flash update functionality is already in
place, it is being used to update another file called sysconfig.
Some embodiments can use webconfig/flash.c function call
kd_updateFlash and setDefault to provide functionality to
update our custom configuration file settings to flash memory.

In some embodiments, the configuration file settings will
simply be a text file with variables separated by a semicolon
pointing to a value separated by a new line. The configuration
file settings is “sample.cnf” modifiable by a define statement.
Comments should be ignored.

For example, “SysIPAddress: 192.168.200.1\n” would be a
configuration line.

20

25

30

35

40

45

50

55

60

65

14

Some embodiments build on familiar mechanisms. For
some embodiments, one of skill may be interested in source
provided under names such as webserver, webconfig, syscon-
fig.

By way of example, and not limitation, one embodiment
includes: at least 2 10/100 Mbps Ethernet ports, an ARM
based processor of at least 10 MHz, atleast 10 MB of memory
which can include SDRAM, SRAM, FLASH, and also ROM,
a reset button, a power supply, LEDs, and a printed circuit
board or other motherboard to which the other components
are soldered/attached/connected. The components are housed
in a plastic case. But with regard to hardware, one of skill will
understand that methods described herein can be used for a
wide variety of hardware combinations, including variations
in memory capacity, processor architecture and speed, inter-
face capabilities, and other characteristics of computing/net-
working hardware.

It is to be understood that both the foregoing and the fol-
lowing descriptions are exemplary and explanatory only and
are not intended to limit the claimed invention or application
thereof in any manner whatsoever.

Automatic Remote (Networked) Updating Capability

Additional aspects related to the invention will be set forth
in part in the description which follows, and in part will be
obvious from the description, or may be learned by practice of
the invention. Aspects of the invention may be realized and
attained by means of the elements and combinations of vari-
ous elements and aspects particularly pointed out in the fol-
lowing detailed description and the appended claims.

In some embodiments, a methodology provides an inte-
grated plug and play solution for home networks. An appli-
ance can be used for processing of web and email traffic and
can be deployed as a stand-alone appliance. In one implemen-
tation, the appliance utilizes a remote service accessed via a
network. The system executes various procedures to handle
the network traffic. In one embodiment, the system is pro-
vided with an automatic remote updating capability, wherein
the software and data used by the system can be updated
remotely via a network.

In some embodiments, a method includes connecting a
network hardware appliance to an external network within a
home network configuration; including a central processing
unit (CPU) on the network hardware appliance; providing a
memory for storing a set of computer-readable instructions
executed by the central processing unit (CPU) on the network
hardware appliance; connecting the network hardware appli-
ance to one or more user computers; installing the network
hardware appliance between the external network and the
user’s computer; passing all network traffic between the
user’s computer and the external network through the net-
work hardware appliance; generating a request to retrieve
firmware; and receiving firmware. Some embodiments
include authenticating with a remote system using authenti-
cation information. Some include reading from the world
wide web using HTTP protocol.

Some embodiments relate to an appliance for processing
email and web traffic. In some embodiments, for example, a
network hardware appliance is provided for use with a per-
sonal computer of a user, the personal computer being con-
nected to a home network of the user. The network hardware
appliance includes a central processing unit (CPU); a first
network interface connected to the personal computer of the
user; a second network interface connected to an external
network; and a memory storing a set of computer-readable
instructions. When executed by the CPU the instructions
cause the CPU to perform automatic remote firmware updates
as described herein.



US 8,402,109 B2

15

In some embodiments, the personal computer of the user is
connected to an external network. The network hardware
appliance is connected to the home network and is positioned
between the personal computer of the user and the internet.

In some embodiments, a user request for a web resource is
intercepted. The system requests from a target web server the
source code for the resource and receives the source code of
the requested source from the target web server. In some
embodiments, an apparatus intercepts content of a web
resource requested by a user. The requested web resource
being located on a target web server. The apparatus includes
a central processing unit (CPU), a first network interface
coupled to the computer of the user, a second network inter-
face coupled to the external network and a memory storing a
set of computer-readable instructions. The CPU operating
under the direction of the stored instructions intercepts a user
request for the web resource, requests from the target web
server the source code for the resource, and receives the
source code of the requested source from the target web
server.

Anembodiment of the methodology provides an integrated
plug and play solution. The appliance can be used for pro-
cessing of web and email traffic and can be deployed as a
stand-alone appliance. In an embodiment, the system
employs network level analysis and translation and executes
various procedures to handle the network traffic. In one
embodiment, the appliance is provided with an automatic
remote updating capability, wherein the software and data
used by the appliance can be updated remotely via a network.

FIG. 1 depicts a schematic diagram 100 of an exemplary
embodiment of a network appliance 101 for processing email
communications as well as other network content. With ref-
erence to FIG. 1, the appliance may include a data bus 104 or
other communication mechanism for communicating infor-
mation across and among various parts of the appliance 101,
and a processor (CPU) 105 coupled with bus 104 for process-
ing information and performing other computational and con-
trol tasks. In one embodiment the processor 105 is an ARM
processor with clock speed of at least 10 MHz. Appliance 101
may also include a volatile storage 106, such as a random
access memory (RAM) or other dynamic storage device,
coupled to bus 104 for storing various information as well as
instructions to be executed by processor 105. The volatile
storage 106 also may be used for storing temporary variables
or other intermediate information during execution of
instructions by processor 105. In one embodiment, the size of
the memory unit 106 is at least 10 MB. The appliance 101
may further include a read only memory (ROM or EPROM)
107 or other static storage device coupled to bus 104 for
storing static information and instructions for processor 105,
such as basic input-output system (BIOS), as well as various
system configuration parameters. A persistent storage device
108, such as a magnetic disk, optical disk, or solid-state flash
memory device is provided and coupled to bus 104 for storing
information and instructions.

The embodiment of the appliance 101 shown in FIG. 1 also
includes at least two communication interfaces, such as net-
work interfaces 113 and 114 coupled to the data bus 104.
Communication interfaces 113 and 114 provide a two-way
data communication coupling to a network link 114 that is
connected to the network 115. For example, communication
interfaces 113 and 114 may be 10/100 Mbps local area net-
work interface cards (LAN NIC) to provide a data communi-
cation connection to a compatible LAN. Wireless links, such
aswell-known 802.11a, 802.11b, 802.11g and Bluetooth may
also be used for network implementation. In any such imple-
mentation, communication interfaces 113 and 114 send and

20

25

30

35

40

45

50

55

60

65

16

receive electrical, electromagnetic or optical signals that
carry digital data streams representing various types of infor-
mation.

Network link 114 typically provides data communication
through one or more networks to other network resources. For
example, network link 114 may provide a connection through
network 115 to a host computer 120, or to other network
resources (not shown). Thus, the appliance 101 can access
network resources located anywhere on the Internet 115, such
as a remote network storage or web servers. On the other
hand, the appliance 101 may also be accessed by user com-
puter 121 located anywhere on the corresponding local area
network.

Local network (not shown) and the Internet 115 both use
electrical, electromagnetic or optical signals that carry digital
data streams. The signals sent through the various networks
and the signals on network links 113 and 114, which carry the
digital data to and from appliance 101, are exemplary forms
of carrier waves transporting the information.

However, carrier waves per se are not claimed. Whenever
reference is made herein to data or instructions, it is under-
stood that these items configure a computer-readable memory
(RAM, ROM, flash, etc.), thereby transforming it to a par-
ticular article, as opposed to simply existing on paper, in a
person’s mind, or as a carrier wave or other transitory signal
on a wire, for example. Unless expressly stated otherwise in a
claim and permitted by applicable law at the relevant time, a
claim does not cover a signal per se. A memory or other
computer-readable storage medium is presumed to be non-
transitory unless expressly stated otherwise.

The appliance 101 can send messages and receive data,
including program code, through the variety of network(s)
including any local area network as well as the Internet 115 by
means of network links 114 and 113. For example, when the
system 101 acts as a network server, it might transmit a
requested code or data for an application program running on
user’s computer 121 client(s) and/or the host 120 through any
local area network (not shown) as well as the Internet 115.
Similarly, it may receive code or data from other network
entities. Likewise, in some embodiments the system 101
includes functionality of a network hub, router, modem, or
other network device which has a position in the network
configuration adjacent to an illustrated Spam Cube 101 posi-
tion.

In particular, some embodiments include router function-
ality. Router functionality in general is familiar. As noted, for
example, in U.S. Pat. No. 6,321,267 to Donaldson, in some
cases a packet-filtering router routes packets from the Internet
to an SMTP proxy server via a LAN. The router operates at
the network layer of the protocol reference model using the
Internet Protocol version 4 (IPv4). However, with appropriate
changes to the socket programming interface, router func-
tionality also operates with other network layer protocols
such as Internet Protocol version 6 (IPv6) or Novell Netware.
As noted in US Patent Application Publication No. 2002/
0007453 by Nemovicher, some routers switch communica-
tion traffic between a communication network and a LAN
under the direction and control of a load balancer and fire
wall. As noted in US Patent Application Publication No.
2006/0053293 by Zager et al., in some cases [P addresses are
dynamically assigned to most users by DHCP servers at the
ISP or a router at the edge of the LAN on which the sender
computer resides. As noted in US Patent Application Publi-
cation No. 2006/0068755 by Shraim et al., a computer and/or
any other appropriate system component may use resources
such as publicly-available domain name server (DNS) data,
routing data and/or the like, to investigate a server suspected



US 8,402,109 B2

17

of conducting fraudulent activities. As another example, the
routing information in the message header may be analyzed
to determine whether the message originated from and/or was
routed through a suspect domain, again enhancing the likeli-
hood that the message is a phish.

With continued attention to FIG. 1, the received code may
be executed by processor 105 as it is received, and/or stored in
persistent or volatile storage devices 108 and 106, respec-
tively, or other non-volatile storage for later execution. In this
manner, the appliance 101 may obtain application code
updates from remote network resources.

The appliance 101 may also use the network interface 114
to receive various code and data updates, which it may use in
its operation. For example, such data updates may include
latest virus definition files. For this purpose, the appliance
may perform periodic checks to determine whether such
updates are available. The appliance 101 may also user net-
work interfaces 114 to issue requests to remote network
resources, such as remote virus scanning services and to
receive the appropriate responses. Finally, the user may con-
nect to the appliance through, for example, network interface
113 in order to perform necessary configuration of the appli-
ance.

In one embodiment, one or both of the network interfaces
113 and 114 may be a wireless network interface operating in
accordance with a wireless networking protocol, such as
Bluetooth, 802.11a, 802.11b and/or 802.11g. In another
embodiment both interfaces 113 and 114 are conventional
wire-based network interfaces.

FIG. 2A illustrates an exemplary home network configu-
ration, wherein the appliance 101 is configured to protect a
single desktop computer 201. In this exemplary configura-
tion, the appliance 101 is installed between the cable/DSL
modem and the user’s desktop computer, such that all net-
work traffic between the user’s computer 201 and the outside
network 206 passes through the appliance. To this end, the
user’s computer 201 is connected to one of the aforemen-
tioned two network interfaces 113 and 114, while the other
interface is coupled with the cable/DSL modem 203. The
modem 203, in turn is connected via connection 205 with ISP
204, which enables the user’s computer to access the internet
206 and remote servers such as servers 207, 208, 209, 210. In
an alternative embodiment, the functionality of the illustrated
Spam Cube 101 and of the adjacent cable or DSL. modem 203
is combined into a single system 101.

FIG. 2B illustrates an exemplary configuration of home
network 300, which includes the appliance 101 configured in
a manner designed to protect a local area network (LAN),
which includes multiple desktop computers 201. In this con-
figuration, the appliance 101 is installed between the cable/
DSL modem 203 and the network hub/router 301, which
provides network connectivity to the desktop computers 201.

In alternative embodiments, the functionality and compo-
nents of the illustrated Spam Cube 101 is combined into a
single appliance or system 101 with the functionality and
components of the adjacent cable or DSL. modem 203, or with
the functionality and components of the adjacent Network
Hub/Router 301, or with the functionality and components of
both the modem 203 and the router 301. In such configura-
tions, the appliance 101 can filter all network traffic reaching
the computers 201.

The network hub 301 may be wireless network-enabled. In
an alternative embodiment, the network hub 301 may be
integrated with the appliance 101. The integrated hub may
also be either wireless or wired.

The other elements of the networking configuration shown
in FIG. 2B, including cable/DSL. modem 203, connection

20

25

30

35

40

45

50

55

60

65

18

205, and ISP 204, are generally equivalent to the correspond-
ing elements of FIG. 2A, described hereinabove.

FIG. 3 illustrates an exemplary operating sequence of a
network appliance configured to process email traffic. In
accordance with the illustrated sequence, email message 302
is sent by an entity located on the external network (e.g.
Internet) 206 to the user’s computer 201. The message 302
may contain one or more attachments, which may include
certain malware, such as viruses, worms or other threats. In
order to facilitate protection of the user’s personal computer
from the threats contained in the email 302, the appliance 101,
is arranged to intercept the email message 302. Upon the
interception of the message 302 by the appliance 101, the
appliance 101 performs an initial inspection of the received
email message and its attachment(s) and, if necessary, sub-
mits a service request 304 to the remote antivirus scanning
engine 306. The aforementioned service request may direct
the external virus scanning service to perform a virus check of
any attachments to the email message 302. In order to enable
the requested scanning, the appliance 101 may include the
corresponding attachments with the request 304. In one
embodiment, the appliance 101 requests the anti-virus scan-
ning of only specific attachment types. For example, during
the initial inspection, the appliance 101 may determine
whether the attached file is an executable and request remote
scanning of the attachment based on the results of this deter-
mination.

After receiving the request 304 from the appliance 101,
together with the relevant attachment email files, the remote
scanning system 306 performs the necessary processing of
the email attachments and determines the presence of any
threats therein in accordance with well-known scanning algo-
rithms. The scanning system may utilize a plurality of alter-
native scanning algorithms. The exact algorithm used by the
system may be selected by the user of the appliance 101
during the configuration process. The user’s selection may be
stored in the storage devices 106, 107 or 108 of the appliance
101. Existing scanning products which may be used by the
scanning system 306 include, without limitation, Norton
Antivirus and McAfee Security software. The use of the
remote scanning service 306 enables the system to perform
scanning operations in an on-demand manner without pro-
viding the appliance 101 with the processing power required
to perform the scanning operation. In addition, the scanning
software executing on servers 306 may be easily and conve-
niently updated. The aforementioned two features of the sys-
tem configuration enable the appliance 101 to be imple-
mented using inexpensive hardware.

After the completion of the scanning process, the external
scanning engine 306 responds to the appliance 101 with
response 305 containing information on any detected threats.
For example, the response 305 may indicate that one or more
of'the attachments to the email contain viruses. Upon receipt
of the response, the appliance 101 neutralizes the detected
threat, by, for example, removing the infected attachment,
and re-writes the received email message 302 to include
appropriate warning to the user. The aforesaid warning may
be placed either in the subject line or in the body of the
message. The re-written email containing the warning 308 is
then forwarded by the appliance 101 to the user’s computer
201. Finally, the appliance 101 performs the update of its
statistics information.

FIG. 4 illustrates an exemplary operating sequence 400 of
the network appliance configured to process various web
content viewed by a user using user’s computer. The depicted
process is initiated when a user requests a web resource by
inputting at 402 URL 401 into a web browser window on



US 8,402,109 B2

19

user’s computer 201. Upon the receipt of the URL informa-
tion 401, the browser sends HTTP request 403 requesting the
target web service (in the example shown in FIG. 4, the target
website is) the website of CNN news service) to provide the
resource specified by the received URL. The request 403 is
intercepted by the appliance 101, which contacts the target
web server 406 on behalf of the user and sends a request 404
for the source code of the web resource specified by the user.
Inresponse to the received request, the target server 406 sends
a reply message 405, accompanied with the full source code
of the requested resource. The appliance 101 receives the
code furnished by the web server 406 and initiates a scan of
the received source code for any possible threats, including,
for example, any spyware.

During the scan process, the appliance 101 may use a
remote scan engine 408 to achieve most comprehensive threat
detection. To this end, the appliance 101 may send a request
409 to the remote network of scan engines 408 containing the
entire source code ofthe web resource, or any portion thereof.
The outside scan engines 408 examine the content of the
received source code and send reply 407 to the appliance,
indicating whether any potential threats were detected. Upon
the receipt of the reply 407, the appliance 101 sends at 410 a
warning message 411 to be displayed in the user’s browser
window, warning the user of the presence of any potential
threats within the requested web resource. In one embodi-
ment, after the appropriate warning is displayed to the user,
the user is provided with an option to either avoid viewing
potentially harmful web resource or to proceed with the view-
ing despite the shown warning.

FIGS. 5A, 5B, 6A and 6B provide more detailed illustra-
tion of the internal operating sequence of an embodiment of
the appliance. Specifically, FIG. 5A depicts the first phase
500 of that exemplary operating sequence. The shown oper-
ating sequence is executed by the CPU 105 shown in FIG. 1.
In order to enable the appliance to execute the described
procedures, the appliance may be provided with an operating
system, which may be pre-loaded into one or more of the
storage devices 106, 107 and 108 of FIG. 1. Exemplary oper-
ating systems which may be used to control appliance 101
include Linux, UNIX (example: BSD), or RTOS (example:
VxWorks).

The process illustrated in FIG. 5 A is automatically initiated
when, at step 502, the appliance 101 accepts a connection
from user’s computer 201 on the outbound port 110, corre-
sponding to TCP/IP protocol, well known to persons of skill
in the art. Through the established connection, at step 503, the
appliance 101 intercepts a request generated by user’s email
client software to retrieve messages corresponding to user’s
email account from the internet service provider (ISP). At
step 504, the appliance opens a connection to the destination
1P address corresponding to the email service subsystem of
the ISP. At step 505, the system receives authenticating infor-
mation, such as username and password, corresponding to
user’s email account with the ISP. The system uses the
received authentication information to establish a session
with the remote email service and, at step 506, sends to this
service a command to scan the user’s mailbox for duplicate
messages and, when appropriate, to delete them. At step 507,
the system receives the “LIST” command from the user’s
email client and forwards it to the email service system. The
aforesaid list command request the email service to provide
the listing of all emails in the user’s email account.

The continuation of the first phase 500 of the process
shown in FIG. 5A is illustrated in FIG. 5B. At step 508, the
appliance receives from the user’s email client the “RETR”
command, which requests the remote email subsystem to

20

25

30

35

40

45

50

55

60

65

20

retrieve one or more email messages in the user’s email
account. Upon the receipt of this command from the email
client, the appliance 101 forwards it to the email server,
which, in response, begins a message retrieval process. Prior
to retrieving a specific message, the appliance 101 first per-
forms a check of the message size. If the size of the message
is less than a predetermined threshold value, for example, 200
KB, the system retrieves the entire message, see step 510. On
the other hand, if the size of the message exceeds the aforesaid
threshold, only a block of the message is retrieved, see step
509. In one embodiment of the system, the size of the
retrieved block is 200 KB. However, other block sizes may be
used instead.

Upon the retrieval of the message, the system first checks if
the sender of the message identified in the “From” field
thereof matches an existing entry in the blacklist table. This
table lists all senders, the email correspondence from which
should be blocked. If the match in the blacklist table is found,
the corresponding email message is blocked at step 521. At
step 512, the appliance checks whether the content of the
message, as described by the “Content-Type” field of the
message header, may include encrypted attachments. If the
message contains only unencrypted attachments, the opera-
tion proceeds to step 514, whereupon the system requests the
remote HTTP virus scanning server to perform the scanning
of the message body for viruses. If the virus is found, the
system blocks the message at step 521. If, no virus is found or
if the message may contain encrypted attachments, the opera-
tion of the system proceeds to step 513, whereupon the sender
of the message, which is identified in the corresponding
“From” record, is compared with entries in the whitelist table.
This table contains a list of sender email addresses from
which email correspondence should be allowed without fur-
ther inspection. If the sender address matches one of the
aforesaid whitelist entries, the email message is allowed at
step 520.

On the other hand, if the message sender email address
does not match any entries in the whitelist, the system checks
the recipient of the email message identified in the “To” field
of the message header against entries in the parental control
profile. This profile includes email addresses of recipients,
which should not receive email messages. If the match is
found, the email message is again blocked at step 521. If no
matching entries in the parental control profile exist, the sys-
tem proceeds with step 516, whereupon the identity fraud
analysis algorithm inspects the header of the email message
for possible phishing scam. If such scam is detected, the
message is again blocked at step 521.

Upon passing of the phishing scam inspection, the message
header pattern is analyzed at step 517 for SPAM content.
Again, if SPAM is detected, the message is blocked at step
521. If SPAM is not detected in the header, at step 518, the
system checks whether the message header indicates pres-
ence of encrypted email message. The encrypted content is
indicated, for example, by presence of “Content-Type: appli-
cation/x-pkes7-mime” record in the header of the email. If the
content is not encrypted, the system inspects the body of the
message for SPAM content at step 519. If the SPAM is not
detected or if the email body is encrypted, the system accepts
the email at step 520.

After the email is rejected at step 521 or accepted at step
520, the system performs certain logging and user notification
operations illustrated in FIG. 6 A. Specifically, is the email is
allowed or denied, the system collects and stores the session
logging information at steps 628 and 601, respectively. In
case of a denial, the appliance at step 602 verifies whether
identity fraud was detected in the email content. Ifthis was the



US 8,402,109 B2

21

case, the email is tagged by placing an appropriate message,
such as “[PHISH]” either in the subject line (step 603) or,
alternatively, in the header of the email message (step 607),
depending on the configuration parameters specified by the
user. The system may further insert phishing scam alert into
the body of the message at step 606.

The system then proceeds with the determination of
whether a virus was detected in the email, see step 608. If the
virus was found, the appliance again performs tagging of the
email either in the subject line or in the header, depending on
the user’s configuration, at steps 609-610 and 611-612,
respectively. If the user’s parameters call for recipient notifi-
cation of virus-containing emails, the system disables the
virus and re-writes the message body inserting an appropriate
virus warning (steps 613 and 614). If the configuration
requires sender notification, the appliance generates an email
message to the sender of the virus-containing email, which
includes a message alerting the sender of the email message
of the virus (step 616).

If SPAM was detected in the email message, the email is
likewise tagged either in the subject or the header, at steps
618, 620 and 621-622, respectively. Finally, at step 623, the
system inserts a management control toolbar into the message
body.

The continuation of the described operating process is
illustrated in FIG. 6B. With reference to this figure, the tagged
email with the inserted management toolbar is forwarded to
the client at step 624. The client terminates the session at step
615 with the QUIT command, which the system forwards to
the remote email server. Finally, at step 626, the system sends
the collected logging information to a remote HTTP server
for storage. The shutdown and session termination is per-
formed at step 627. The system logs detailed information on
the accepted and rejected messages, as well as the detected
threats. Upon the request by the user, the logged information
may be displayed in a text or graphical form.

It should be noted that the present invention is not limited
to any specific email or web communication protocols. The
appliance may be utilized in connection with any known
communication protocols, including, without limitation,
POP3, SMTP or HTTP.

Finally, it should be understood that processes and tech-
niques described herein are not inherently related to any
particular apparatus and may be implemented by any suitable
combination of components. Further, various types of general
purpose devices may be used in accordance with the teach-
ings described herein. It may also prove advantageous to
construct specialized apparatus to perform the method steps
described herein. The present invention has been described in
relation to particular examples, which are intended in all
respects to be illustrative rather than restrictive. Those skilled
in the art will appreciate that many different combinations of
hardware, software, and firmware will be suitable for prac-
ticing the present invention. For example, the described soft-
ware may be implemented in a wide variety of programming
or scripting languages, such as Assembler, C/C++, perl, shell,
PHP, ASP.NET, Java, Ruby, AJAX, Rails etc.

Moreover, other implementations of the invention will be
apparent to those skilled in the art from consideration of the
specification and practice of the invention disclosed herein.
Various aspects and/or components of the described embodi-
ments may be used singly or in any combination in the com-
puterized content filtering system. It is intended that the
specification and examples be considered as exemplary only,
with atrue scope and spirit of the invention being indicated by
the following claims.

20

25

30

35

40

45

50

55

60

65

22

Methods

FIG. 8 illustrates some method embodiments, in a flow-
chart 800. In a given embodiment zero or more illustrated
steps of a method may be repeated. Steps in an embodiment
may also be done in a different order than the top-to-bottom
order that is laid out in FIG. 8. Steps may be performed
serially, in a partially overlapping manner, or fully in parallel.
The order in which a flowchart is traversed to indicate the
steps performed during a method may vary from one perfor-
mance of the method to another performance of the method.
The flowchart traversal order may also vary from one method
embodiment to another method embodiment. Steps may also
be omitted, combined, renamed, regrouped, or otherwise
depart from the illustrated flows, provided that the method
performed is operable and conforms to at least one claim.
Steps described as being performed by a user may also be
performed by another person, or by a machine, on behalf of a
user. Another person who performs steps on behalf of a user
need not have a particular user in mind.

Some embodiments provide a method for upgrading a
wireless router. Some include the step of containing 801a
firmware 802 version 803, namely, a flash memory in the
wireless router 101 containing a first version of router firm-
ware, with the router firmware including instructions to be
executed by a processor 105 of the wireless router, and the
router firmware also including data.

Some methods include remotely requesting 804 a firmware
update 805, namely, the wireless router sending 806 a request
807 for a firmware update, with the request being sent from
the wireless router over a network 115 connection toward a
server 207.

Some methods include receiving 808 a responsive firm-
ware image 809, namely, the wireless router receiving over
the network connection a response to the request for a firm-
ware update, with the response including at least a firmware
image for a second version of router firmware which differs
from the first version of router firmware by reason of contain-
ing at least one firmware change, a firmware change being a
difference in firmware data and/or a difference in firmware
instructions. The firmware image includes a plurality of
chunks 810, each chunk having a size which is no greater than
a predetermined chunk size.

Some methods include destructively overwriting 811 flash
memory chunks, namely, the wireless router destructively
overwriting the first version of router firmware 802 in the
flash memory with the second version of router firmware 802.
In some, the destructive overwriting proceeds in a chunk-wise
manner such that prior to being overwritten by all of the
chunks the flash memory contains neither a complete copy of
the first version nor a complete copy of the second version of
the router firmware. In some embodiments, the wireless
router 101 is configured to run whatever version of router
firmware is in the router’s flash memory after the router
system 101 is rebooted 812.

Some methods include going live 813 with upgraded firm-
ware 802, by reason of the wireless router rebooting 812 and
thereby making the firmware change(s) go live.

In some embodiments, a wireless router upgrading method
includes writing 814 the flash memory and then writing 814 a
kernel 703 memory. That is, the wireless router destructively
overwrites the first version of router firmware in the flash
memory with the second version of router firmware, and then
writes a copy of content of the second version of router
firmware to a kernel memory in a volatile RAM memory 106
in the wireless router 101 before going live 813 with the
upgraded firmware. This is a kernel-first approach described
above.



US 8,402,109 B2

23

In some embodiments, a wireless router upgrading method
includes writing both 815 flash memory and a volatile RAM
disk. That is, the wireless router destructively overwrites the
first version of router firmware in the flash memory with the
second version of router firmware, and also writes a copy of
content of the second version of router firmware to a RAM
disk in a volatile RAM memory 106 of the router 101.

In some embodiments, the firmware image chunks 810
have at least one predetermined executable order, namely, an
order in which the chunks are arranged in an executable copy
of the firmware image. Some router upgrading methods
include receiving 808, 816 firmware chunks 810 in a volatile
RAM memory in the wireless router in an order which differs
from the executable order, and re-ordering 817 the chunks.
For example, in some methods the step of destructively over-
writing 811 flash memory chunks also arranges 817 chunks in
the flash memory in the executable order.

In some embodiments, the firmware image 702 has a size
and the flash memory has a storage capacity, and the method
includes the wireless router checking 818 to see whether the
size of the firmware image is less than a predetermined maxi-
mum firmware image size. For example, the predetermined
maximum firmware image size can be at least a specified
number (e.g., one, two, four, eight) of chunk sizes smaller
than the flash memory storage capacity.

In some embodiments, the wireless router remaps 819 a
ROM memory address 820 in the router to a RAM memory
address 821 in the router. This may be done, for example, to
pass control to code at the remapped address. In some meth-
ods, the wireless router decompresses 822 data held within
the flash memory in the router and copies 823 the data to a
RAM-based file system in the router. For example, the router
may decompress and copy a firmware image, an operating
system kernel, email filtering code, anti-virus definitions,
and/or other data.

In some embodiments, the router uses flash memory (in
addition to or in place of a hard disk or remote store, for
instance) to preserve user configuration through a reboot.
Before going live with upgraded firmware, the wireless router
overwrites 824 at least a portion of the flash memory with
user-definable configuration settings 825 from a text file 826.
The settings may be copied, for example, into one or more
flash chunks that are not occupied by the firmware image
code. After going live with upgraded firmware, the wireless
router overwrites 827 the text file with the configuration set-
tings from the flash memory.

In some embodiments, the response received 828 includes
an indication 829 that a user’s billing status is inactive, and
the method redirects 830 a web browser 831 to a billing
activation page 832.

In some embodiments, the firmware image chunks 810
have at least one predetermined executable order, the step of
receiving a responsive firmware image receives 816 the
chunks in the wireless router in an order which differs from
the executable order, and the method re-orders 817 the chunks
such that the step of destructively overwriting flash memory
chunks arranges chunks in the flash memory in the executable
order, and the method also writes 815 a copy of the chunks to
a kernel memory in the wireless router.

In some embodiments, the router authenticates 833 the
firmware image, e.g., by using a server certificate, image
checksum, decryption, and/or other familiar authentication
tool or technique.

CONCLUSION

Although particular embodiments are expressly illustrated
and described herein as methods or as devices, it will be

20

25

30

35

40

45

50

55

60

65

24

appreciated that discussion of one type of embodiment also
generally extends to other embodiment types. For instance,
the descriptions of methods in connection with FIG. 8 also
help describe the operation of devices/systems like those
discussed in connection with FIGS. 1, 2A, 2B, 3, 4, 7A, and
7B. It does not follow that limitations from one embodiment
are necessarily read into another.

Not every item shown in the Figures or discussed in the text
need be present in every embodiment. Although some possi-
bilities are illustrated here in text and drawings by specific
examples, embodiments may depart from these examples.
For instance, specific features of an example may be omitted,
renamed, grouped differently, repeated, or be a mix of fea-
tures appearing in two or more of the examples. Thus, email
filtering is omitted from some embodiments of appliance 101.
Functionality shown at one location may also be provided at
a different location in some embodiments. Thus, some appli-
ances 101 have a mix of wireless hub functionality as well as
remote update functionality.

Reference has been made to the figures throughout by
reference numerals. Any apparent inconsistencies in the
phrasing associated with a given reference numeral, in the
figures or in the text, should be understood as simply broad-
ening the scope of what is referenced by that numeral.

Asused herein, terms such as “a” and “the” are inclusive of
one or more of the indicated item or step. In particular, in the
claims a reference to an item generally means at least one
such item is present and a reference to a step means at least
one instance of the step is performed.

Headings are for convenience only; information on a given
topic may be found outside the section whose heading indi-
cates that topic.

All claims as filed are part of the specification.

While exemplary embodiments have been shown in the
drawings and described above, it will be apparent to those of
ordinary skill in the art that numerous modifications can be
made without departing from the principles and concepts set
forth in the claims. Although the subject matter is described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the spe-
cific features or acts described above the claims. It is not
necessary for every means or aspect identified in a given
definition or example to be present or to be utilized in every
embodiment. Rather, the specific features and acts described
are disclosed as examples for consideration when implement-
ing the claims.

All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
scope to the full extent permitted by law.

What is claimed is:

1. A method for upgrading a wireless router, comprising
the steps of:

(a) containing a firmware version, namely, a flash memory
in the wireless router containing a first version of router
firmware, the router firmware including instructions to
be executed by a processor of the wireless router, the
router firmware also including data;

(b) remotely requesting a firmware update, namely, the
wireless router sending a request for a firmware update,
the request being sent from the wireless router over a
network connection toward a server;

(c) receiving a responsive firmware image, namely, the
wireless router receiving over the network connection a
response to the request for a firmware update, the
response including at least a firmware image for a sec-
ond version of router firmware which differs from the



US 8,402,109 B2

25

first version of router firmware by reason of containing
at least one firmware change, a firmware change being a
difference in firmware data and/or a difference in firm-
ware instructions, the firmware image including a plu-
rality of chunks, each chunk having a size which is no
greater than a predetermined chunk size and is less than
one-eight the flash memory storage capacity;

(d) destructively overwriting flash memory chunks,
namely, the wireless router destructively overwriting the
first version of router firmware in the flash memory with
the second version of router firmware, the destructive
overwriting proceeding in a chunk-wise manner such
that prior to being overwritten by all of the chunks the
flash memory contains neither a complete copy of the
first version nor a complete copy of the second version of
the router firmware, and wherein the wireless router is
configured to run whatever version of router firmware is
in the router’s flash memory after being rebooted; and

(e) going live with upgraded firmware, namely, the wire-
less router rebooting, thereby making the firmware
change(s) go live.

2. The wireless router upgrading method of claim 1, further
comprising writing the flash memory and then writing a ker-
nel memory, namely, the wireless router destructively over-
writing the first version of router firmware in the flash
memory with the second version of router firmware, and then
writing a copy of content of the second version of router
firmware to a kernel memory in a volatile RAM memory in
the wireless router before going live with upgraded firmware.

3. The wireless router upgrading method of claim 1, further
comprising writing both flash memory and a volatile RAM
disk, namely, the wireless router destructively overwriting the
first version of router firmware in the flash memory with the
second version of router firmware, and also writing a copy of
content of the second version of router firmware to a RAM
disk in a volatile RAM memory of the router.

4. The wireless router upgrading method of claim 1,
wherein the firmware image chunks have at least one prede-
termined executable order, namely, an order in which the
chunks are arranged in an executable copy of the firmware
image, wherein the step of receiving a responsive firmware
image receives the chunks in a volatile RAM memory in the
wireless router in an order which differs from the executable
order, and wherein the method comprises re-ordering the
chunks such that the step of destructively overwriting flash
memory chunks arranges chunks in the flash memory in the
executable order.

5. The wireless router upgrading method of claim 1,
wherein the firmware image has a size and the flash memory
has a storage capacity, and the method further comprises the
step of the wireless router checking to see whether the size of
the firmware image is less than a predetermined maximum
firmware image size, and the predetermined maximum firm-
ware image size is at least two chunk sizes smaller than the
flash memory storage capacity.

6. The wireless router upgrading method of claim 1, further
comprising the step of the wireless router remapping a ROM
memory address in the router to a RAM memory address in
the router.

7. The wireless router upgrading method of claim 1, further
comprising the step of the wireless router decompressing data
held within the flash memory in the router and copying the
data to a RAM-based file system in the router.

10

20

25

30

35

40

45

50

55

60

65

26

8. The wireless router upgrading method of claim 1, further
comprising the steps of:

before going live with upgraded firmware, the wireless
router overwriting at least a portion of the flash memory
with user-definable configuration settings from a text
file; and

after going live with upgraded firmware, the wireless router
overwriting the text file with the configuration settings
from the flash memory.

9. The wireless router upgrading method of claim 1,
wherein the response includes an indication that a billing
status is inactive, and the method further comprises redirect-
ing a web browser to a billing activation page.

10. The wireless router upgrading method of claim 1,
wherein the firmware image chunks have at least one prede-
termined executable order, namely, an order in which the
chunks are arranged in an executable copy of the firmware
image, wherein the step of receiving a responsive firmware
image receives the chunks in the wireless router in an order
which differs from the executable order, and the method
comprises re-ordering the chunks such that the step of
destructively overwriting flash memory chunks arranges
chunks in the flash memory in the executable order, and the
method also comprises writing a copy of the chunks to a
kernel memory in the wireless router.

11. A remotely upgradable wireless router, comprising:

a processor;

a volatile RAM memory in operable communication with
the processor and containing a kernel, the kernel includ-
ing data and including instructions which upon execu-
tion by the processor at least partially control operation
of the wireless router, the kernel in particular containing
a flash memory device driver;

a network interface card connectable to a TCP/IP network
for two-way data communication of the wireless router
with a remote server, the network interface card in oper-
able communication with the volatile RAM memory;

a wireless link interface connectable to a wireless network
for two-way data communication of the wireless router
with a local computer, the wireless link interface in
operable communication with the volatile RAM
memory;

a flash memory in operable communication with the pro-
cessor by use of the flash memory device driver, the flash
memory containing a version of wireless router firm-
ware, the wireless router firmware including data and
including instructions which upon execution by the pro-
cessor at least partially control operation of the wireless
link interface, the flash memory having a storage capac-
ity, the wireless router firmware image including a plu-
rality of chunks, each chunk having a size which is no
greater than a predetermined chunk size and is less than
one-eighth the flash memory storage capacity;

the wireless router further characterized in that upon
execution of at least some of the instructions by the
processor, the wireless router will do the following:

receive over the network interface from the remote server a
wireless router firmware image,

write content of the wireless router firmware image to the
flash memory,

write content of the wireless router firmware image to the
kernel memory after writing the content to the flash
memory, and then

reboot, thereby passing control to at least some of the
wireless router firmware content that was written to the
flash memory.



US 8,402,109 B2

27

12. The remotely upgradable wireless router of claim 11,
wherein the wireless router upon execution of at least some of
the instructions by the processor destructively overwrites the
version of wireless router firmware in the flash memory in a
chunk-wise manner with chunks of the wireless router firm-
ware image.

13. The remotely upgradable wireless router of claim 11,
wherein the wireless router firmware image includes a plu-
rality of chunks which have at least one predetermined
executable order, namely, an order in which the chunks are
arranged in an executable copy of the wireless router firm-
ware image, and wherein the wireless router upon execution
of at least some of the instructions by the processor receives
the chunks in the RAM memory in an order which differs
from the executable order, and re-orders chunks to arrange the
chunks in the flash memory in the executable order.

14. The remotely upgradable wireless router of claim 11,
further comprising a ROM memory address remapped to a
RAM memory address in the router.

15. A system comprising the remotely upgradable wireless
router of claim 11 and a text file containing user-defined
configuration settings, wherein the flash memory contains a
copy of the user-defined configuration settings.

28

16. The remotely upgradable wireless router of claim 11,
wherein the wireless router firmware image has a size, and the
size of the wireless router firmware image is at least two
chunk sizes smaller than the flash memory storage capacity.

17. The remotely upgradable wireless router of claim 11,
wherein the wireless router upon execution of at least some of
the instructions by the processor performs authentication to
verify validity of the wireless router firmware image.

18. The remotely upgradable wireless router of claim 11,
wherein the wireless link interface conforms with at least one
802.11 standard for wireless communications.

19. The remotely upgradable wireless router of claim 11,
further comprising a 10/100 Mbps local area network inter-
face card to provide a data communication connection to a
local area network, the kernel including instructions which
upon execution by the processor at least partially control
operation of the local area network interface card.

20. The remotely upgradable wireless router of claim 11,
wherein the kernel comprises open source operating system
code.



