
(12) United States Patent
Marino et a].

US008402109B2

US 8,402,109 B2
Mar. 19, 2013

(10) Patent N0.:
(45) Date of Patent:

(54) WIRELESS ROUTER REMOTE FIRMWARE
UPGRADE

2003/0066062 A1
2003/0236970 A1

4/2003
12/2003

Brannock et al.
Palmer et al.

2004/0015941 A1 l/2004 Sekine
(75) Inventors: Joseph P. Marino, New York, NY (US); 2004/0083469 A1 4/2004 Chen et al.

Jonathan Fortill’ Montreal Shamoon et al.
2005/0005160 A1 l/2005 Bates et al.

(73) Assignee: Gytheion Networks LLC, NeW York, 2005/0021637 A1 l/2005 Cox
NY (Us) 2005/0021968 A1 l/2005 Zimmer et al.

_ _ _ _ _ 2005/0027807 A1 2/2005 Fengler et al.

(*) Notice: Subject to any disclaimer, the term ofthis 2005/003917g A1 2/2005 Marolia et a1,
patent is extended or adjusted under 35 2005/0055595 A1 3/2005 Frazer et a1.
U_S_C_ 154(b) by 0 day, 2005/0097542 A1 5/2005 Lee

2005/0198160 A1 9/2005 Shannon et al.
(21) Appl. N0.: 13/587,394 2005/0198173 A1 9/2005 Evans
(22) Filed: Aug‘ 16, 2012 2005/0283519 A1 12/2005 ~Turgeman et al.

(Continued)
(65) Prior Publication Data

Us 2013/0013907 A1 Jan. 10, 2013 OTHER PUBLICATIONS

. . Karim Yaghmour, “9.5 U-Boot” from “Building Embedded Linux
Related U's' Apphcatlon Data Systems”, retrieved from <<http://etut0rials.0rg/Linux+systems/

(63) Continuation-in-part of application No. 13/015,053, embedded+linux+systems/Chapter+9.
?led on Jan. 27, 2011, noW Pat. No. 8,326,936, Which
is a continuation of application No. 11/350,905, ?led
on Feb. 8, 2006, noW Pat. No. 7,904,518.

+Setting+Up+the+B00tl0ader/9.5+U-B00t/>>, Apr. 2003, 18 pages.

(Continued)

(60) Provisional application No. 60/653,163, ?led on Feb. Primary Examiner * Phuoc Nguyen
15, 2005. (74) Attorney, Agent, or Firm * Oglivie LaW Firm

(51) Int. Cl.
G06F 15/167 (2006.01) (57) ABSTRACT

(52) US. Cl. 709/212; 709/201; 709/216; 709/220 A Wireless router receives a ?rmware update from a remote
(58) Field of Classi?cation Search 709/201, Server, and destructive/1y overwrites router ?rmware in ?ash

709/2l2i2l6, 220
See application ?le for complete search history.

memory in a chunk-Wise manner, and then Writes a kernel
memory before going live With upgraded ?rmware. Some
routers authenticate the ?rmWare image. In some cases,

(56) References Cited image chunks are re-ordered into an executable order after
receipt and before ?nishing their ?nal arrangement in the

US. PATENT DOCUMENTS ?ash memory. In some routers, a maximum ?rmWare image
6 321 267 B1 11/2001 Donaldson siZe is at least tWo chunk siZes smaller than the ?ash memory
637013440 Bl 3/2004 Kim et a1, storage capacity. Some routers remap ROM to RAM memory.
6,854,007 B1 2/2005 Hammond Some decompress data from ?ash into a RAM. Some save
6,941,466 B2 9/2005 Mastrianni text ?le con?guration settings in ?ash before rebooting. Some
6,986,049 B2 l/2006 Delany d ,
7 027 463 B2 400% Mathew et a1‘ etect a user s inactive billing status and redirect a Web

2002/0007’453 A1 1/2002 Nemovicher browser to a billing activation Page
2002/0073304 A1 6/2002 Marsh et a1.
2002/0083156 A1 * 6/2002 Wysoczynski 709/219 20 Claims, 11 Drawing Sheets

/ s00

Contain em a version m of firmware m

"i Remotely request ggii a firmware update egg

"*1 Receive M a (responsive) firmware image E l"

“1 Destructively w overwrite ?ash memory chunks

Re'order m firmware chunks into ?ash memory

"7 Check me ?rmware image size vs. chunks,

Remap m ROM address m to RAM address w L

overwrite 8A flash with settings @ from file BZi

Overwriie m file with settings from flash

Receive m biiiirig status inactive iridicaiion w L,

US 8,402,109 B2
Page 2

2005/0289646
2006/0004896
2006/0031319
2006/0047766
2006/0047920
2006/0053293
2006/0068755
2006/0069732
2006/0075028
2006/0143475
2006/0184635
2007/0274230
2008/0156178

U.S. PATENT DOCUMENTS

A1 12/2005
A1 1/2006
A1 2/2006
A1 3/2006
A1 3/2006
A1 3/2006
A1 3/2006
A1 3/2006
A1 4/2006
A1 6/2006
A1 8/2006
A1 * 11/2007

A1 7/2008

Zimmer et al.
Nelson et al.
Nelson et al.
Spadea, III
Moore et al.
Zager et al.
Shraim et al.
Shannon et al.
Zager et al.
Herbert et al.
Owen et al.
Werber et al. 370/254

Georges et al.

OTHER PUBLICATIONS

“Flash memory”, retrieved from <<http://en.Wikipedia.org/Wiki/
Flashimemory>>, Aug. 1, 2012, 12 pages.
“Push technology”, retrieved from <<http://en.Wikipedia.org/Wiki/
Pushitechnology>>, Jul. 30, 2012, 4 pages.
“RealVieWTM Compilation Tools, Version 2.1, Developer Guide”,
ARM DUI 0203D, copyright date 2002-2004, 198 pages.
“MANGA KS8695 GNU/Linux 2.6.x: File Release Notes and
Changelog”, retrieved from <<http://sourceforge.net/project/
shownotes.php?groupiid:127426&releaseiid:293127>>, copy
right date 2004, 2 pages.

* cited by examiner

US. Patent Mar. 19, 2013 Sheet 1 0111 US 8,402,109 B2

P @390

A, “w? .,

X}? \LE) J- 1 mmmwm? u?mvmmam
w. 35mg 1 1W £83m?“ $32332 /.§\ NI .1. \ h N

S,” m: 2?. mt. m9, “,1

_ mg 5mm

m3 mam,

\ , “A,
mmwsgw E?wwwhma

f

M; ,

§ ,0,’

an”

US. Patent Mar. 19, 2013 Sheet 2 0111 US 8,402,109 B2

93

mam

§ 055
Emma? Jwm

gm 5 m?mo

W

, 3m

New .

ii; i;

US. Patent Mar. 19, 2013 Sheet 3 0111 US 8,402,109 B2

US. Patent Mar. 19, 2013 Sheet 5 0111 US 8,402,109 B2

.E:

w @Bm?
“wag g? EQQEQ

m3 m3. /./ 4,

mgmmu /
gum @m? wig

mm,“ .

mew

M/ mow

US. Patent Mar. 19, 2013 Sheet 6 0111 US 8,402,109 B2

2% 05mm a, 0&5 mwmw
Em 0.1 wgmmmmmm rum; WQQEEQQ {$3
1 mwwwwag mum Eggs“. ,mzwumm kw mmmmwmmg

mama ?ma?mn ??mg?mmm
up EQEEQQ wmgn?mmmm

mam 2M1 “swig mam mxwuwm
t. 0g, mt. Ea mggwa g a: @3321, éwmgmmn E mm?magu QQQO aw” $2.,

mama mmgm wwmmmgh Emma mwgw
hr m8, at Em. manage g ,

mam 3“! mcam?wgmu mcm?wmé mmm?mwg

US. Patent Mar. 19, 2013 Sheet 7 0111 US 8,402,109 B2

mm @590

US. Patent Mar. 19, 2013 Sheet 8 0111 US 8,402,109 B2

US. Patent Mar. 19, 2013 Sheet 9 0111 US 8,402,109 B2

“mm

53% at: mEEmM S QQMEEGEM cgmwwm mgmmaw wm?mmg ncmm »

mm 939m

gswmwmw ?mcm?h? mam cganwmzw 1.11,
@mm \& mmw \&

20% Eat gmEEou tag Emaéa a

0% \\

3&3 2 mmmmmm? Eméem @

US. Patent Mar. 19, 2013 Sheet 10 0111 US 8,402,109 B2

101

R
Volatile RAM Memory 1_0_§ Flash Memory Firmware

Storage Jill/119.5
Kernel m, RFU m Firmware ZQZ.

k

V

[Data Bus lQgt

‘ \

Processor 105 Wireless Link Remote Network
— Interface E Interface Card _11_4

Figure 7A

101

R

[Volatile RAM Memory E Flash Memory Firmware Storage 107/108

k

Data Bus M j

\ \ V \

Processor Wireless Link Ethernet LAN Remote
@ Interface 1_1_3_ Interface Card 1_1_3_ NIC 1151

Figure 7B

US. Patent Mar. 19, 2013 Sheet 11 0111 US 8,402,109 B2

/ 800
M

Contain w a version @ of firmware Q

U Remotely request 593 a firmware update §Q_5_ __,

Receive Q5 a (responsive) firmware image M _,,

Destructively im overwrite flash memory chunks W,

‘ Reboot §_1_2_ and go live 51; with upgraded firmware __,

‘ Write-flash-and-then-write-kernel gm with firmware

V Write-both-flash-and-RAM-disk 515 with firmware

Receive im chunks w out of executable order

V Re-order £111 firmware chunks into flash memory ___,

Check @ firmware image size vs. chunks, flash _,

’ Remap w ROM address w to RAM address @

Decompress 522 data from flash, copy egg to RAM __,

V ()verwrite @ flash with settings @ from file 82_6

V Overwrite 521 file with settings from flash __,

Receive @ billing status inactive indication 82 ___,

Redirect @ browser @ to activation page 32 ___,

Send §Q§ request 591 for firmware update

V
Authenticate §_3_§ firmware image m,

Figure 8

US 8,402,109 B2
1

WIRELESS ROUTER REMOTE FIRMWARE
UPGRADE

RELATED APPLICATIONS

The present application claims priority to, and incorpo
rates, US. patent application Ser. No. 13/015,053 ?led Jan.
27, 2011, and US. patent application Ser. No. 11/350,905
?led Feb. 8, 2006, Which is now US. Pat. No. 7,904,518, and
US. Provisional Patent Application Ser. No. 60/653,163 ?led
Feb. 15, 2005.

BACKGROUND

To aid understanding of the technical context of the inno
vations claimed herein, several references are discussed
beloW. This discussion is meant to help promote a full and
accurate examination of the claims presented.

HoWever, there are also limits on the inferences one can
properly draW from this discussion. These references Were
identi?ed With the present claims in mind, and the observa
tions made here about the references are likeWise guided by
the present claims. One of skill Would not necessarily have
combined any of these references or made such observations
Without the bene?t of hindsight. The mere fact that tWo or
more of the references are discussed here is not evidence of a
motivation to combine those references at the time of inven
tion Without using the present claims as a blueprint.

Moreover, the inclusion of a reference in this discussion is
not a blanket acceptance of every statement made in the
reference; What the references recite is not necessarily cor
rect. Each reference must also be considered independently of
this discussion to fully understand the reference’s teachings,
as only a brief space is allotted to any given reference here and
each reference speaks for itself. The reference recitations
noted here are not meant to be a full description, or even a

complete overvieW or summary, of the teachings of any ref
erence. Other references may also be considered Worthy of
attention.

Also, a reference may use terms differently than they are
used here in describing the innovations claimed, and tWo
different references may use the same term differently. Nor is
the inclusion of a reference in this discussion evidence that
the reference is enabling With regard to a particular claim, or
indeed, With regard to any claim that is presented here.

The folloWing discussion of references begins by pointing
out some things that are not present in any of the references.
These gaps in the references are Worthy of attention, but they
are merely examples of hoW the references could be consid
ered. In particular, it does not folloW that something X is
present in the references merely because the discussion did
not say that X Was missing from the references.

Bearing these guidelines in mind, the reference discussion
Will noW proceed.
None of these references mention an “executable order” for

“chunks” of a ?rmWare image. None recite “re-ordering” or
“re-sequencing” ?rmWare image chunks that Were received in
some order other than the executable order.

With regard to destructively overWriting ?ash memory
chunks, the only mention of “destructive” in any of these
references is in Zimmer (2005/0021968) paragraph [0048]
Which recites a “non-destructive reset.”
None of these references recite a “Wireless router” as a

device Whose ?rmWare Will be upgraded. Only Georges
(2008/0156178) mentions any ofthe “802.11” Wireless com

20

25

30

35

40

45

50

55

60

65

2
munication standards, and that is not in connection With
router ?rmWare upgrades because Georges does not mention
“routers” at all.
None of these references mention “checking” to see

Whether the siZe of a ?rmWare image is at least tWo chunk
siZes smaller than a device’s ?ash memory storage capacity.
With regard to remapping a ROM memory address to a

RAM memory address in the context of a ?rmWare upgrade,
only tWo of the references mention “remapping” an address in
any context, namely, Moore, et al. (2006/0047920) and
Shamoon, et al. (2004/01073 5 6). HoWever, Moore’ s Abstract
directs attention at hoW to “enable one-time or feW-time pro
grammable memories to Work With existing consumer elec
tronic devices (such as those that Work With ?ashian eras
able, non-volatile memory) Without requiring a ?rmWare
upgrade . . . ” (emphasis added). Shamoon directs attention to

remapping for security. Shamoon [0310] recites “circuitry
Which remaps some of the available memory space, so that, in
unsecure mode, the CPU cannot address secure memory loca
tions.” Shamoon [0312] similarly recites “Some memory
space may be rendered off-limits to general purpose uses, for
example by remapping”.

With regard to Writing ?rmWare to both ?ash memory and
a volatile RAM disk, none of these references mention a
“RAM disk” or a “RAM drive”.

United States Patent Application Publication No. 2003/
0066062 by Brannock, et al. recites that a method for updat
ing platform ?rmWare is disclosed. Brannock further recites
that this capability is facilitated by a standard softWare
abstraction for a ?rmWare storage device, knoWn as Firmware
Volume (FV) that is managed through a Firmware File Sys
tem (FPS). The FFS enables ?rmWare ?les to be created,
deleted, and updated individually. The FFS also enables a
plurality of ?rmWare ?les to be updated atomically by man
aging ?le state information via state bits stored in a ?le header
of each ?rmWare ?le, Whereby an atomic change to a single
state bit simultaneously causes the FPS to use an updated set
of ?rmWare ?les in place of an original set of ?rmWare ?les.

United States Patent Application Publication No. 2004/
0083469 by Chen, et al. recites that an update method is used
in an optical disk system to update ?rmWare information
stored in a ?rmWare memory. Chen further recites that the
method includes fetching program code and an update pro
gram routine from an update source, storing the program code
into a ?rst buffer, storing the update program routine into a
second buffer, executing the update program routine stored in
the second buffer, Writing the program code stored in the ?rst
buffer into the ?rmWare memory to update the ?rmWare infor
mation, and changing a value of a program counter of the
microprocessor such that the microprocessor executes the
program code stored in the ?rmWare memory at a predeter
mined location of the program code instead of executing a
next instruction in the program code located after the current
position of the program counter, and using the program code
as updated ?rmWare information to control the optical disk
system.

United States Patent Application Publication No. 2005/
0027807 by Fengler, et al. recites that systems and methods
for facilitating peripheral device ?rmWare installation are
disclosed. Fengler further recites that in one embodiment, a
system and a method pertain to transmitting a ?rmWare avail
ability noti?cation, receiving a ?rmWare doWnload request,
and transmitting a ?rmWare ?le to a peripheral device for
installation on the peripheral device. In another embodiment,
a system and a method pertain to receiving a ?rmWare avail
ability noti?cation With a peripheral device, and providing a

US 8,402,109 B2
3

related noti?cation to a user, the related noti?cation being
provided by the peripheral device.

United States Patent Application Publication No. 2005/
0055595 by Frazer, et al. recites that a system for remotely
updating software on at least one electronic device connected
to a network is disclosed. Frazer further recites that the elec
tronic devices have a non-volatile rewritable storage unit
divided into at least two partitions, one of which will contain
core ?rmware and the other of which will contain auxiliary
software. When an update is received at the device, the
updated core ?rmware is written to overwrite the partition in
the rewritable storage unit that contained the auxiliary soft
ware. When this is completed and veri?ed, the previous ver
sion of the core ?rmware stored in the storage unit is disabled
from execution by the device. Next, the updated auxiliary
software is written to overwrite the old version of the core
?rmware. When this write is complete, the device determines
a suitable time for it to be rebooted to execute the updated
software. In another embodiment, the present core ?rmware
in the device is copied from the partition it is in to the other
partition, overwriting the auxiliary software stored there. The
new core ?rmware received to update the device is overwrit
ten into the ?rst partition, the old copied core ?rmware being
present in case of an upgrade failure, and upon a successful
update of the ?rst partition, the auxiliary software is written to
the second partition, overwriting the copied old core ?rm
ware. In this manner, the position of the core ?rmware and
auxiliary software within the partitions is preserved during
normal operation of the device.

United States Patent Application Publication No. 2008/
0156178 by Georges, et al. recites that systems and methods
for creating, modifying, interacting with and playing music
are provided, particularly systems and methods employing a
top-down process, where the user is provided with a musical
composition that may be modi?ed and interacted with and
played and/or stored (for later play). In an unusually long
Abstract which is not fully reproduced here, Georges also
recites that the system preferably is provided in a handheld
form factor, and a graphical display is provided to display
status information, graphical representations of musical lanes
or components which preferably vary in shape as musical
parameters and the like are changed for particular instruments
or musical components such as a microphone input or audio
samples. An interactive auto-composition process preferably
is utiliZed that employs musical rules and preferably a pseudo
random number generator, which may also incorporate ran
domness introduced by timing of user input or the like, the
user may then quickly begin creating desirable music in
accordance with one or a variety of musical styles, with the
user modifying the auto-composed (or previously created)
musical composition, either for a real time performance and/
or for storing and subsequent playback. The remainder of the
Abstract may be read in Georges itself.

United States Patent Application Publication No. 2006/
0143475 by Herbert, et al. recites that a method according to
one embodiment may include: receiving a ?rst encrypted
signal at a server of a computing network, the ?rst encrypted
signal comprising ?rmware encrypted by a ?rst encryption
algorithm having a ?rst complexity level; sending a second
encrypted signal over the computing network to at least one
managed client in response to the ?rst encrypted signal, the
second encrypted signal comprising the ?rmware encrypted
by a second encryption algorithm having a second complexity
level, wherein said ?rst complexity level is greater than said
second complexity level; and updating existing ?rmware of
the at least one managed client in response to receipt of the
second signal at the at least one managed client. Herbert

20

25

30

35

40

45

50

55

60

65

4
further recites that many alternatives, variations, and modi?
cations are possible without departing from this embodiment.

United States Patent Application Publication No. 2005/
0097542 by Lee recites that a ?rmware update method is
disclosed. First, a tag is written to a ?rmware storage device.
Next, ?rst ?rmware in the ?rmware storage device is replaced
by second ?rmware. If the replacing step is successful, the tag
is deleted. Before the execution of the second ?rmware, a
veri?cation operation is executed. If the tag is not present, the
second ?rmware is executed. If the tag is present, an abnor
mity processing procedure is executed. The abnormity pro
ces sing procedure terminates of execution of the second ?rm
ware, reads third ?rmware via an interface, and replaces the
second ?rmware with the third ?rmware.

United States Patent Application Publication No. 2005/
0039178 by Marolia, et al. recites that aspects of an invention
may be seen in a system and method for downloading update
packages into an electronic device communicatively coupled
to a carrier network. Marolia further recites that the system
may facilitate the update of ?rmware/ software in the elec
tronic device. Different protocols may be utiliZed for discov
ery and download of update packages. Also, different proto
cols may be utiliZed for provisioning and for subsequent
downloading of update packages.

United States Patent Application Publication No. 2002/
0073304 by Marsh, et al. recites that a system and a method
that uses a software application operable under a current
?rmware/operating system con?guration to install a new
?rmware version without “compromising” the operating sys
tem are presented. Marsh further recites that the software
application may con?gure a computer system to install a
plurality of software ?xes con?gured to enhance functional
ity under a new ?rmware/ operating system environment after
the ?rmware has been successfully upgraded. Such function
ality enhancements may be associated with external periph
erals, as well as, input/output circuit cards, processors, and
the like. In addition, the software application may con?gure
the computing device to “boot” under the new ?rmware/
operating system environment upon subsequent system ini
tialiZations. Furthermore, the software application permits
the distribution of ?rmware upgrades via a network. The
capability to install ?rmware remotely permits a system
administrator to “push” the new ?rmware to a plurality of
network coupled computing devices, thus avoiding manual
intervention at each device.

United States Patent Application Publication No. 2006/
0047920 by Moore, et al. recites that embodiments described
therein can be used to enable one-time or few-time program
mable memories to work with existing consumer electronic
devices (such as those that work with ?ashian erasable,
non-volatile memory) without requiring a ?rmware upgrade,
thereby providing backwards compatibility while minimiZ
ing user impact. Moore further recites that as such, these
embodiments are a viable way to bridge one-time or few-time
programmable memories with existing consumer electronic
devices that have ?ash card slots. These embodiments also
allow future consumer electronic devices to be designed with
out updating ?rmware to include a ?le system customiZed for
a one-time or few-time programmable memory.

United States Patent Application Publication No. 2003/
0236970 by Palmer, et al. recites that in a data processing
method and system a mass storage device (DASD) of a data
processing system is partitioned to include a service partition.
Palmer further recites that the service partition is typically
located on a portion of the DASD beyond the highest address
accessible to the operating system and application programs.
The service partition will typically include the current ver

US 8,402,109 B2
5

sions of peripheral device ?rmware, any BIOS extensions,
and device drivers. During a system boot, the boot code will
invoke a peripheral device call that reports the device’s ?rm
ware version level to compare the ?rmware versions of all the
peripheral devices against the archived ?rmware versions
stored in the service partition. If a mismatch is detected, the
system boot will typically force an update of the peripheral
device ?rmware to the level that is known to be good. Any
such ?rmware updates are recorded in a log that is accessible
to system management applications. Any revisions to ?rm
ware may be imaged into the service partition so that the
revised version will be incorporated into the peripheral device
itself during the next subsequent system boot.

United States Patent Application Publication No. 2004/
0015941 by Sekine recites that an information-processing
apparatus includes a nonvolatile memory device con?gured
to store ?rmware. Sekine further recites that the information
processing apparatus has a ?rst unit for issuing an instruction
to make an operating system execute a shutdown process, and
to update the ?rmware, stored in the nonvolatile memory
device, after the operating system has completed the shut
down process. The information-processing apparatus also has
a second unit, responsive to the instruction to update the
?rmware, for updating the ?rmware only after the operating
system has completed the shutdown process.

United States Patent Application Publication No. 2004/
0107356 by Shamoon, et al. recites that a novel method and
apparatus for protection of streamed media content is dis
closed. Shamoon further recites that in one aspect, the appa
ratus includes control means for governance of content
streams or content objects, decryption means for decrypting
content streams or content objects under control of the control
means, and feedback means for tracking actual use of content
streams or content objects. The control means may operate in
accordance with rules received as part of the streamed con
tent, or through a side-band channel. The rules may specify
allowed uses of the content, including whether or not the
content can be copied or transferred, and whether and under
what circumstances received content may be “checked out”
of one device and used in a second device. The rules may also
include or specify budgets, and a requirement that audit infor
mation be collected and/ or transmitted to an external server.
In a different aspect, the apparatus may include a media
player designed to call plugins to assist in rendering content.
A “trust plugin” is disclosed, along with a method of using the
trust plugin so that a media player designed for use with
unprotected content may render protected content without the
necessity of requiring any changes to the media player. In one
aspect, the streamed content may be in a number of different
formats, including MPEG-4, MP3, and the RMFF format.

United States Patent Application Publication No. 2005/
0021968 by Zimmer, et al. recites that a method for providing
a secure ?rmware update is disclosed. This Zimmer applica
tion further recites that a ?rst authentication credential is
securely stored on a platform in an encrypted form using a key
generated by a secure token, such as a trusted platform mod
ule (TPM). Typically, the authentication credential will iden
tify a manufacture and the operation will be performed during
manufacture of the platform. A con?guration of the platform
is “imprinted” such that an identical con?guration is required
to access the key used to decrypt the ?rst authentication
credential by sealing the key against the platform con?gura
tion. During a subsequent ?rmware update process, a ?rm
ware update image containing a second authentication cre
dential is received at the platform. If the platform
con?guration is the same as when the key was sealed, the key
can be unsealed and used for decrypting the ?rst authentica

20

25

30

35

40

45

50

55

60

65

6
tion credential. A public key in the ?rst authentication cre
dential can then be used to authenticate the ?rmware update
image via the second authentication credential.

United States Patent Application Publication No. 2005/
0289646 by Zimmer, et al. recites disclosure of a method of
copying virtual ?rmware smart card code from a ?rst secured
memory in a system and loading the virtual ?rmware smart
card code into a second secured memory in the system so that
the code may be run on a microprocessor to provide smart
card services to the system.

SUMMARY

Various systems/devices and methods for remotely updat
ing router ?rmware are described herein. For example, some
embodiments provide a method for upgrading a wireless
router. A ?ash memory in the wireless router contains a ?rst
version of router ?rmware. The router ?rmware includes
instructions to be executed by a processor of the wireless
router, and the ?rmware also includes data. The wireless
router sends a request for a ?rmware update, the request being
sent from the wireless router over a network connection
toward a server. The wireless router receives over the network
connection a response to the request for a ?rmware update,
the response including at least a ?rmware image for a second
version of router ?rmware which differs from the ?rst version
of router ?rmware by reason of containing at least one ?rm
ware change (a ?rmware change being a difference in ?rm
ware data and/or a difference in ?rmware instructions). The
?rmware image includes a plurality of chunks, each chunk
having a siZe which is no greater than a predetermined chunk
size. The wireless router destructively overwrites the ?rst
version of router ?rmware in the ?ash memory with the
second version of router ?rmware. The destructive overwrit
ing proceeds in a chunk-wise manner such that prior to being
overwritten by all of the chunks the ?ash memory contains
neither a complete copy of the ?rst version nor a complete
copy of the second version of the router ?rmware. The wire
less router is con?gured to run whatever version of router
?rmware is in the router’ s ?ash memory after being rebooted.
The wireless router reboots, thereby making the ?rmware
change(s) go live.
Some embodiments include writing the ?ash memory and

then writing a kernel memory. That is, the wireless router
destructively overwrites the ?rst version of router ?rmware in
the ?ash memory with the second version of router ?rmware,
and then writes a copy of content of the second version of
router ?rmware to a kernel memory in a volatile RAM
memory in the wireless router before going live with
upgraded ?rmware.
Some embodiments include writing both ?ash memory and

a volatile RAM disk. That is, the wireless router destructively
overwrites the ?rst version of router ?rmware in the ?ash
memory with the second version of router ?rmware, and also
writes a copy of content of the second version of router
?rmware to a RAM disk in a volatile RAM memory of the
router.

In some embodiments, the ?rmware image chunks have at
least one predetermined executable order, namely, an order in
which the chunks are arranged in an executable copy of the
?rmware image. The step of receiving a responsive ?rmware
image receives the chunks in a volatile RAM memory in the
wireless router in an order which differs from the executable
order, and the method includes re-ordering the chunks such
that the step of destructively overwriting ?ash memory
chunks arranges chunks in the ?ash memory in the executable
order.

US 8,402,109 B2
7

In some embodiments, the ?rmware image has a siZe and
the ?ash memory has a storage capacity. The method includes
the wireless router checking to see whether the siZe of the
?rmware image is less than a predetermined maximum ?rm
ware image siZe. The predetermined maximum ?rmware
image siZe is at least two chunk siZes smaller than the ?ash
memory storage capacity.
Some embodiments include the wireless router remapping

a ROM memory address in the router to a RAM memory
address in the router. Some include the wireless router
decompressing data held within the ?ash memory in the
router and copying the data to a RAM-based ?le system in the
router; some include both steps.

In some embodiments, before going live with upgraded
?rmware, the wireless router overwrites at least a portion of
the ?ash memory with user-de?nable con?guration settings
from a text ?le. Then after going live with upgraded ?rmware,
the wireless router overwrites the text ?le with the con?gu
ration settings from the ?ash memory.

In some embodiments, the response received by the wire
less router includes an indication that a billing status is inac
tive, and the method includes redirecting a web browser to a
billing activation page.

In some embodiments, the ?rmware image chunks have at
least one predetermined executable order, namely, an order in
which the chunks are arranged in an executable copy of the
?rmware image. The step of receiving a responsive ?rmware
image receives the chunks in the wireless router in an order
which differs from the executable order. The method includes
re-ordering the chunks such that the step of destructively
overwriting ?ash memory chunks arranges chunks in the ?ash
memory in the executable order. The method also includes
writing a copy of the chunks to a kernel memory in the
wireless router.
Some embodiments described herein provide a remotely

upgradable wireless router. The wireless router includes a
processor, volatile RAM memory, a network interface card, a
wireless link interface, and a ?ash memory. The volatile
RAM memory is in operable communication with the pro
cessor and contains a kernel. The kernel includes data and
including instructions which upon execution by the processor
at least partially control operation of the wireless router. In
particular, the kernel contains a ?ash memory device driver.
The network interface card is connectable to a TCP/IP net
work such as the Internet for two-way data communication of
the wireless router with a remote server. The network inter
face card is also in operable communication with the volatile
RAM memory. The wireless link interface is connectable to a
wireless network for two-way data communication of the
wireless router with a local computer, and is also in operable
communication with the volatile RAM memory. The ?ash
memory is in operable communication with the processor by
use of the ?ash memory device driver. The ?ash memory
contains a version of wireless router ?rmware, which
includes data, also includes and instructions which upon
execution by the processor at least partially control operation
of the wireless link interface.

In some embodiments, the wireless router is further char
acteriZed in that upon execution of at least some of the instruc
tions by the processor, the wireless router will do the follow
ing: send a request for a ?rmware update over the network
interface card to the remote server, receive over the network
interface a wireless router ?rmware image, write content of
the wireless router ?rmware image to the ?ash memory, write
content of the wireless router ?rmware image to the kernel
memory after writing the content to the ?ash memory, and
then reboot, thereby passing control to at least some of the

20

25

30

35

40

45

50

55

60

65

8
wireless router ?rmware content that was written to the ?ash
memory. In some embodiments, the wireless router does not
necessarily send a request for a ?rmware update, but may
instead receive the ?rmware update without having ?rst
requested it.

In some embodiments, the ?ash memory has a storage
capacity, and the wireless router ?rmware image includes a
plurality of chunks, each chunk having a siZe which is no
greater than a predetermined chunk siZe and is less than
one-eighth the ?ash memory storage capacity. The wireless
router upon execution of at least some of the instructions by
the processor destructively overwrites the version of wireless
router ?rmware in the ?ash memory in a chunk-wise manner
with chunks of the wireless router ?rmware image.

In some embodiments, the wireless router ?rmware image
includes a plurality of chunks which have at least one prede
termined executable order, namely, an order in which the
chunks are arranged in an executable copy of the wireless
router ?rmware image. The wireless router upon execution of
at least some of the instructions by the processor receives the
chunks in the RAM memory in an order which differs from
the executable order, and re-orders chunks to arrange the
chunks in the ?ash memory in the executable order.

In some embodiments, the remotely upgradable wireless
router includes a ROM memory address remapped to a RAM
memory address in the router. In some, the wireless router is
joined with a text ?le containing user-de?ned con?guration
settings, and the ?ash memory contains a copy of the user
de?ned con?guration settings.

In some embodiments, the wireless router ?rmware image
has a siZe and the ?ash memory has a storage capacity. The
wireless router ?rmware image includes a plurality of chunks.
Each chunk has a siZe which is no greater than a predeter
mined chunk siZe and is less than one-eighth the ?ash
memory storage capacity. The siZe of the wireless router
?rmware image is at least two chunk siZes smaller than the
?ash memory storage capacity.

In some embodiments, the wireless router upon execution
of at least some of the instructions by the processor performs
authentication to verify validity of the wireless router ?rm
ware image.

In some embodiments, the wireless link interface conforms
with at least one 802.11 standard for wireless communica
tions. In some, the wireless router includes a 10/100 Mbps
local area network interface card to provide a data communi
cation connection to a local area network, and the kernel
includes instructions which upon execution by the processor
at least partially control operation of the local area network
interface card. In some embodiments, the kernel includes
open source operating system code.
The examples given are merely illustrative. This Summary

is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used to
limit the scope of the claimed subject matter. Rather, this
Summary is provided to introduceiin a simpli?ed formi
some concepts that are further described below in the
Detailed Description. The innovation is de?ned with claims,
and to the extent this Summary con?icts with the claims, the
claims should prevail.

DESCRIPTION OF THE DRAWINGS

A more particular description will be given with reference
to the attached drawings. These drawings only illustrate
selected aspects and thus do not fully determine coverage or
scope.

US 8,402,109 B2

FIG. 1 depicts a schematic diagram of a system and device
for processing network content;

FIG. 2A illustrates an exemplary con?guration to protect a
single desktop computer;

FIG. 2B illustrates an exemplary con?guration to protect a
local area network (LAN), which includes multiple desktop
computers;

FIG. 3 illustrates an exemplary operating sequence of a
system and device con?gured to process email traf?c;

FIG. 4 illustrates an exemplary operating sequence of a
system and device con?gured to process various web content
viewed by a user using the user’s computer;

FIGS. 5A, 5B, 6A and 6B provide more detailed illustra
tion of an internal operating sequence of a system and device;

FIGS. 7A and 7B depict alternative schematic diagrams of
a wireless router system and device for processing network
content, include one wireless router con?guration with an
Ethernet 10/ 1 00 Mbps local area network interface card, and
one con?guration without that network interface card; and

FIG. 8 is a ?ow chart illustrating steps of some method
embodiments for remoter ?rmware update.

DETAILED DESCRIPTION

Observations on Focus
It is not unusual for a child application to set forth claims

which have a different focus than the claims of a parent
application. In the present situation, provisional application
No. 60/653,163 contains 148 pages of a disclosure which was
incorporated and built upon in the application that ultimately
issued as US. Pat. No. 7,904,518. The present document
incorporates and builds upon both those ancestor applica
tions. Claims of the ’ 518 patent focus in part on ?ltering email
message content, but the underlying applications are not lim
ited to that topic. The claims presented here are differently
focused than the ’518 patent claims, but an attentive reader
will ?nd common subject matter in the three applications. For
example, the present document is titled “Wireless Router
Remote Firmware Upgrade,” the ’ 163 provisional discusses a
Remote Flash Updater utility capable of writing ?rmware to
?ash memory, and the ’5 1 8 patent Abstract states that an
“appliance is provided with an automatic remote updating
capability, wherein the software and data used by the appli
ance can be updated remotely via a network.” The ’5 1 8 patent
also teaches that some embodiments of the appliance include
functionality of a network hub or router.

Observations on Meaning and Scope
Reference will now be made to exemplary embodiments

such as those illustrated in the drawings, and speci?c lan
guage will be used herein to describe the same. But alterations
and further modi?cations of the features illustrated herein,
and additional applications of the principles illustrated
herein, which would occur to one skilled in the relevant art(s)
and having possession of this disclosure, should be consid
ered within the scope of the claims.

The meaning of terms is clari?ed in this disclosure, so the
claims should be read with careful attention to these clari?
cations. Speci?c examples are given, but those of skill in the
relevant art(s) will understand that other examples may also
fall within the meaning of the terms used, and within the
scope of one or more claims. Terms do not necessarily have
the same meaning here that they have in general usage, in the
usage of a particular industry, in a given reference document
discussing others’ work, or in a particular dictionary or set of
dictionaries. Reference numerals may be used with various
phrasings, to help show the breadth of a term. Omission of a
reference numeral from a given piece of text does not neces

20

25

30

35

40

45

50

55

60

65

10
sarily mean that the content of a Figure is not being discussed
by the text. The inventors assert and exercise the right to their
own lexicography. Terms may be de?ned, either explicitly or
implicitly, here in the Detailed Description and/ or elsewhere
in the application ?le.

Reference will be made to the accompanying drawings.
The drawings show by way of illustration, and not by way of
limitation, speci?c embodiments and implementations con
sistent with principles and possibilities presented herein. The
mere fact that the same reference number is used in two places
in the ?gures and/or the text does not imply that the refer
enced item is identical in every respect in each instance. For
example, appliance 101 shown in FIG. 1 is not necessarily
identical in every respect with appliance 101 shown in FIG.
2A, or with appliance 101 shown in FIG. 2B, and so on. The
various implementations are described in su?icient detail to
enable those skilled in the art to practice the invention and it
is to be understood that other implementations may be uti
liZed and that structural changes and/ or substitutions of vari
ous elements may be made without departing from the scope
and spirit of the claimed invention. The description is, there
fore, not to be construed in a limited sense. Additionally,
various embodiments described may be implemented in the
form of a software running on a general purpose computer, in
the form of a specialiZed hardware, or combination of soft
ware and hardware, except as otherwise required by the claim
being considered.

Throughout this document, use of the optional plural “(s)”
means that one or more of the indicated feature is present. For
example, the term “?rmware change(s)” means “one or more
?rmware changes” or equivalently “at least one ?rmware
change”.
As used herein, “overwriting” a memory means overwrit

ing at least a portion of the memory. That is, overwriting a
memory allows overwriting the entire memory, but does not
require overwriting the entire memory.
As used herein, “updating” and “upgrading” are used inter

changeably.
As used herein, a “chunk” of ?ash memory is the smallest

amount of memory that is overwritten to perform a single
?ash memory write. In a typical ?ash memory, chunk siZe is
128 Kbytes, but different vendors may use different chunk
siZes. A ?ash memory chunk is sometimes called a “block,”
but care is called for because attention to context reveals that
the word “block” is also used in other ways, e. g., in discussing
?lesystem data structures.
Remote Flash Updater
In some embodiments, a Remote Flash Updater (RFU) is a

utility capable of writing to ?ash memory, a type of non
volatile memory storage, with an image ?le gathered off a
HTTP server. With reference to FIGS. 7A, 7B, and 8, for
example, in some embodiments the RFU 701 is a utility
capable of writing ?rmware 702 to ?ash memory 107 or other
?rmware storage 108. The RFU may be implemented to run
with a kernel 703, such as an open source operating system
kemel.

In one embodiment, the RFU 701 is a Linux 2.4 kernel
based user-land software running on an ARM based chipset.
It is written in ANSI C programming language compiled
cleanly with an ARM gcc compiler with theiWall and4O2
compiler ?ags. RFU 701 development may be guided by
familiarity with ?ash memory code source samples including
source code for a ?ash kernel driver, and a library implemen
tation that interfaces with the ?ash kernel driver. One RFU
701 uses a C library with ?ash I/O functionality. One RFU
binary name is RFUpdater.

US 8,402,109 B2
11

In one embodiment, the Linux 2.4 system implements a
ROM to RAM remap 819 for ?le system access. Upon boot,
the boot loader decompresses 822 data held Within ?ash
memory and copies 823 it into a RAM based ?le system. After
the RFU 701 updates ?ash memory 107 or other ?rmWare
storage 108 With an image ?le, the system 101 Will reboot 812
in order for the changes to be live. Secure, cross-standard and
compact programming methodologies are used.
One Updater 701 method includes the folloWing steps,

Which are exemplary rather than the sole possible implemen
tation of teaching herein. Begin updater execution. Calculate
kernel 703 and ramdisk ?ash memory offset and siZe. Initial
iZe POST update variables. Issue an HTTP 1.0 POST request
on update.akalink.net port 80/TCP. Read header response,
continue if neW update is available. Read header response,
image ?le siZe >100 KB and <35 MB. Calculate kernel and
ramdisk ?ash memory offsets from image ?le. Write 815
image ?le to 128 KB blocks of RAM (Write kernel and ram
disk separately). Re-order 817 RAM blocks in received order.
Authenticate 833iif image ?le checksum is valid, continue.
This is a less than 180 second cycle. Perform overlapping
steps to re-program ?ash memory starting With kernel fol
loWed by ramdisk (a kernel-?rst approach 814): Erase next
block chunk of ?ash, Write next block chunk to ?ash from
RAM, free up RAM block chunk. Reboot 812 system.

In some embodiments, a purpose of the remote ?ash
updater 701 is to Write to ?ash memory 107 or other ?rmWare
storage 108 an image ?le upon invocation, the image ?le
being gathered remotely from a HTTP site.

During a process of doWnloading the image ?le off the
HTTP server, some embodiments require the image ?le to be
chunked doWn in 128 KB memory blocks since the system
101 Won’t be able to allocate 3.5 MB of memory in a single
allocation. This option is dynamic for tuning purposes. Block
re-ordering 817 is done afterWards to validate the image
checksum.
Some embodiments utiliZe already existent ?ash library

functions to achieve the result of re-programming ?ash
memory; they don’t require re-Writing a full ?ash implemen
tation from scratch.

In some embodiments, the image ?le contains the kernel
image and the ramdisk image embedded as one. Therefore,
byte offsets headers during the HTTP session are provided in
order for the kernel image and ramdisk image to be Written to
the proper ?ash memory 107 or other ?rmWare storage 108
area allocated for their usage.

During the process of receiving 808 the image 809 ?le off
the HTTP server and Writing the image ?le to ?ash memory,
some embodiments perform basic authentication 833 to
verify if the image ?le is valid.

In some embodiments, the maximum siZe of ?ash memory
an embodiment is utiliZing is 4 MB. 256 KB of memory is
reserved With another 256 KB memory of free space, there
fore only 3.5 MB is allocatable to ?ash memory.

In some embodiments, the kernel image is Written to ?ash
memory starting from 0x10000 to the siZe of 0x0007FFFF.
The ramdisk image is Written to ?ash memory starting from
0x90000 to the siZe of the image.

In some embodiments, the ?ash library and ?ash kernel
library header ?les provide information regarding ?ash
memory offsets, instructions and function. An implementer
may study the ?ash source code provided along With this
document in order to Write this softWare. Along With the
source code, ethloader.c is softWare that remotely updates
?ash memory by passing it a ?le name, kernel image or

20

25

30

35

40

45

50

55

60

65

12
ramdisk image, With or Without specifying length. It could be
a good source of reference to utiliZe as it can broaden under
standing and avoid confusion.

In some embodiments, after the updater 701 is executed, it
Will initialiZe all variables regarding kernel and ramdisk
memory area begin and end offsets and anything else related
to that in order to knoW Where to Write What in What area, siZes
of blocks, hoW many blocks to Write, etc. It Will then initialiZe
a HTTP POST request 804 to be sent to update.akalink.net on
port 80 via TCP/IP (of course, other Websites Will be used by
other vendors). The socket timeout is 5 seconds, and 15 sec
onds for a returned response.
An example of a POST request:

actionqlpdate
nameIhcube
item:image
An example of a POST response:

X-Update-Length: 2097152<-Length of image
X-Update-Offset: 668402<-Last byte of Kernel Image from 0
X-Update-Cksum: 1808e84cfcbaf71ce1073 cc418ff262a<
cksum checksum

X-Update-Item: image<-Item requested
Image ?le data here<-Item requested data

If the X-Update-Item header value is “image” in such
embodiments, the embodiment knoWs it is dealing With the
correct item, and Will proceed.
Some embodiments Will then verify if this image ?le is

recent by verifying if the header X-Update-Cksum is different
than the Cksum cksum located in a ?le called “cksum” Which
holds the contents of the image current cksum.

If so, processing proceeds to see if 818 the X-Update
Length header value is less than 3 .5 MB (3 670016 bytes) and
larger than 100 KB (102400 bytes).

If so the embodiment Will read and Write the image ?le off
the HTTP server to various 128 KB RAM blocks in tWo
different groups one for the kernel image and one for the
ramdisk image, separating them based on the X-Update-Off
set header value.

Before the Offset starting from 0 is the kernel image, and
after the offset is the ramdisk image. The X-Update-Offset
header value represents the last byte of the kernel image
starting from 0 byte, the rest till the last byte represents the
ramdisk image.
Some embodiments Will re-order 817 the RAM blocks in

?rst received priority and see if 833 the cksum checksum of
the total image corresponds to the value of X-Update-Cksum.
Some embodiments Will begin to re-program ?ash

memory, and Will proceed to start Writing the kernel byte
offset range rather than the ramdisk offset range afterwards.
Kernel image goes ?rst (a kernel-?rst approach 814). This
process is on a block level not a byte level for performance
purposes.

In some embodiments, the procedures Will erase the next
available 128 KB blocks in ?ash, Will Write to ?ash the next
128 KB available block chunk from RAM, and afterWards
Will de-allocate the RAM block chunk memory Written and
proceed in a cycle until the image ?le has been Written.
Once the embodiment has completed Writing the image ?le

to ?ash memory, it Will reboot 812 the system in order for the
image ?le changes to go live.

In some embodiments, Online Upgrade SoftWare Will
destructively 811 upgrade the ?ash 107 on a chunk by chunk
basis unless adequate headroom exists to maintain a redun
dant ?ash bank to hold the Working softWare.

In some embodiments, a CubeUpdater is a built-in soft
Ware component Whose purpose is to perform softWare
updates and check for neW updates on a daily basis. The

US 8,402,109 B2
13

CubeUpdater will use 6 am, 12 am, 6 pm as hours during the
day to attempt to perform a software update. This is used in
case if the intemet connectivity is down at 6 am, it will retry
at different hours.
When it comes time to perform the software update, it will

connect to update.spamcube.com on port 80 and issue a
HTTP POST with the following variables: mac:>00:20:ed:
25:34:37. Other websites and addresses will, of course, be
used in other implementations.

It will return the following answer if there is an error:
0: Invalid client identi?cation
2: No updates available
3: Billing information is inactive

If the client billing is not active, the next time the client
browses a site, the router redirects 830 the browser to a billing
activation page, such as a user pro?le web page that informs
the user of billing status and invites the user to make payment
or other arrangements to activate service. In some embodi
ments, an LED status on the router is also changed to re?ect
the billing status and notify the client.

In some embodiments, the router upgrade includes soft
ware generally, as opposed to ?rmware alone. The upgrade
software can be stored on a disk local to the router, e.g., in
compressed or archive format such as tar or gZ format. After
extracting the software, setting/checking permissions, and
applying the upgrade, the router continues (sometimes with
out rebooting) providing services to the user client.
Some embodiments include a software hierarchy, imple

mented in a collection of ?le system directories. In a Linux
system or other UNIX-style system, for example, .0 object
code for the router may be kept in a /boot/modules directory.
Con?guration ?les such as .conf and some .txt ?les, may be
kept in a / usr/ local/ <router>/ conf directory, where <router> is
a name representing the router code, e.g., “hcube” or “RFU”.
A syscon?g database con?guration ?le may be kept in a
/usr/local/<router>/conf directory, for example. User inter
face .html ?les may be kept in a /usr/local/<router>/www/
include/tpl/html directory, for example.
A user interface in some embodiments includes pages in a

web browser, through which the router receives commands
(e.g., check for available updates) and noti?es the user of
status (e.g., billing inactive, upgrade needed, upgrade avail
able, upgrade installed). Familiar mechanisms may be used in
the user interface, e. g., HTML forms and form variables, CGI
?les, HTML template pages, environment variables, con?gu
ration ?les, and so on. Some embodiments perform a ?ash
update procedure on a WEB_CONFIG_FILE to write the
con?guration ?le to ?ash memory storage.
Some embodiments update a text ?le containing con?gu

ration settings to ?ash memory via CGI. The CGI ?le will be
executed on a system utiliZing ?ash memory 107 as storage,
therefore this functionality is used to keep updated con?gu
ration settings in memory after a system reboot. In some
embodiments, the ?ash update functionality is already in
place, it is being used to update another ?le called syscon?g.
Some embodiments can use webcon?g/?ash.c function call
kd_updateFlash and setDefault to provide functionality to
update our custom con?guration ?le settings to ?ash memory.

In some embodiments, the con?guration ?le settings will
simply be a text ?le with variables separated by a semicolon
pointing to a value separated by a new line. The con?guration
?le settings is “sample.cnf’ modi?able by a de?ne statement.
Comments should be ignored.

For example, “SysIPAddress: 192.168.200.1\n” would be a
con?guration line.

20

25

30

35

40

45

50

55

60

65

14
Some embodiments build on familiar mechanisms. For

some embodiments, one of skill may be interested in source
provided under names such as webserver, webcon?g, syscon
?g.
By way of example, and not limitation, one embodiment

includes: at least 2 10/ 100 Mbps Ethernet ports, an ARM
based processor of at least 10 MHZ, at least 10 MB of memory
which can include SDRAM, SRAM, FLASH, and also ROM,
a reset button, a power supply, LEDs, and a printed circuit
board or other motherboard to which the other components
are soldered/ attached/ connected. The components are housed
in a plastic case. But with regard to hardware, one of skill will
understand that methods described herein can be used for a
wide variety of hardware combinations, including variations
in memory capacity, processor architecture and speed, inter
face capabilities, and other characteristics of computing/net
working hardware.

It is to be understood that both the foregoing and the fol
lowing descriptions are exemplary and explanatory only and
are not intended to limit the claimed invention or application
thereof in any manner whatsoever.

Automatic Remote (Networked) Updating Capability
Additional aspects related to the invention will be set forth

in part in the description which follows, and in part will be
obvious from the description, or may be learned by practice of
the invention. Aspects of the invention may be realiZed and
attained by means of the elements and combinations of vari
ous elements and aspects particularly pointed out in the fol
lowing detailed description and the appended claims.

In some embodiments, a methodology provides an inte
grated plug and play solution for home networks. An appli
ance can be used for processing of web and email traf?c and
can be deployed as a stand-alone appliance. In one implemen
tation, the appliance utiliZes a remote service accessed via a
network. The system executes various procedures to handle
the network tra?ic. In one embodiment, the system is pro
vided with an automatic remote updating capability, wherein
the software and data used by the system can be updated
remotely via a network.

In some embodiments, a method includes connecting a
network hardware appliance to an external network within a
home network con?guration; including a central processing
unit (CPU) on the network hardware appliance; providing a
memory for storing a set of computer-readable instructions
executed by the central processing unit (CPU) on the network
hardware appliance; connecting the network hardware appli
ance to one or more user computers; installing the network
hardware appliance between the external network and the
user’s computer; passing all network tra?ic between the
user’s computer and the external network through the net
work hardware appliance; generating a request to retrieve
?rmware; and receiving ?rmware. Some embodiments
include authenticating with a remote system using authenti
cation information. Some include reading from the world
wide web using HTTP protocol.
Some embodiments relate to an appliance for processing

email and web tra?ic. In some embodiments, for example, a
network hardware appliance is provided for use with a per
sonal computer of a user, the personal computer being con
nected to a home network of the user. The network hardware
appliance includes a central processing unit (CPU); a ?rst
network interface connected to the personal computer of the
user; a second network interface connected to an external
network; and a memory storing a set of computer-readable
instructions. When executed by the CPU the instructions
cause the CPU to perform automatic remote ?rmware updates
as described herein.

